我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Dijkstra算法与Prim算法的异同案例详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Dijkstra算法与Prim算法的异同案例详解

Dijkstra简述

Dijkstra算法用于构建单源点的最短路径树(MST)——即树中某个点到任何其他点的距离都是最短的。例如,构建地图应用时查找自己的坐标离某个地标的最短距离。可以用于有向图,但是不能存在负权值(Bellman-Ford可以处理负权值)。

  • 伪代码

Dijkstra() {
    for each u in G,V {
        //此处做初始化操作,给每个节点u赋键值+∞,设置空为父节点
        u.key = +∞
        u.parent = NULL
    }
    //选初始点r,Q是无向图G中所有点V的权值优先队列,key可看作源点到u的距离
    r.key = 0
    Q = G,V
    while(Q != ∅) {
          //取出Q中权值最小值的点u
          u = extractMin(Q) 
          //取点u连接的所有节点(即无向图G的邻接表中的第u个链表)
          for each v ∈ G.Adj[u] {
              if (v ∈ Q) and (w(u, v) < key) {
                  //若该节点仍在Q中且权值w(w,v)小于其原始权值,则进行松弛操作!
                  v.parent = u
                  v.key = w(u, v) + u.key
              }
          }
      }
}

Prim简述

Prim算法用于构建最小生成树——即树中所有边的权值之和最小。例如,构建电路板,使所有边的和花费最少。只能用于无向图

  • 伪代码

//无向图G, 权值w, 起始点r
MST(G, w, r) {
    for each u in G,V {
        //此处做初始化操作,给每个节点u赋键值+∞,设置空为父节点
        u.key = +∞
        u.parent = NULL
    }
    //选初始点r,Q是无向图G中所有点V的权值优先队列,key可看作u到下一个节点v的距离
    r.key = 0
    Q = G,V
    while(Q != ∅) {
          //取出Q中权值最小值的点u
          u = extractMin(Q) 
          //取点u连接的所有节点(即无向图G的邻接表中的第u个链表)
          for each v ∈ G.Adj[u] {
              if (v ∈ Q) and (w(u, v) < key) {
                  //若该节点仍在Q中且权值w(w,v)小于其原始权值,则进行松弛操作!
                  v.parent = u
                  v.key = w(u, v)
              }
          }
      }
}

MST中任意AB两点之间的距离,并不比原始图中AB的距离短,即原始图中可能存在边E(A,B)**小于**MST中的E(A,B)。

注意上述两个伪算法的差别只在于最后循环体内的松弛操作

  • 最小生成树只关心所有边的和最小,所以有v.key = w(u, v),即每个点直连其他点的最小值(最多只有两个节点之间的权值和)
  • 最短路径树只搜索权值最小,所以有v.key = w(u, v) + u.key,即每个点到其他点的最小值(最少是两个节之间的权值和)

简单总结就是,Dijkstra的松弛操作加上了到起点的距离,而Prim只有相邻节点的权值。

思想

都是使用贪婪和线性规划,每一步都是选择权值/花费最小的边。
贪婪:一个局部最有解也是全局最优解;
线性规划:主问题包含n个子问题,而且其中有重叠的子问题。

Dijkstra算法通过线性规划缓存了最优子路径的解,每一步也通过贪婪算法来选择最小的边。
Prim算法通过贪婪来选择最小的边,而Prim的每个子树都是最小生成树说明满足线性规划的两个条件。

时间复杂度

Time = θ( V * T1 + E * T2)
其中T1为取出键值最小点的时间,T2为降低键值的时间,取决于数据结构。

  • 数组
    T1= O(V), T2 = O(1), TIME = O(V * V + E) = O(V * V)
  • 二叉堆
    T1 = O(lgV), T2 = O(lgV), TIME = O(V * lgV + E * lgV) 
  • 斐波那契堆
    T1 = O(lgV), T2 = O(1), TIME = O(V * lgV + E) = O(V * lgV)

对于稀疏图来说,E远小于V*V,所以二叉堆比较好;
而对于密集图来说,E=V*V,所以数组比较好;
斐波那契堆是最好的情况。

Dijkstra特例

当边的权值都为1的时候,可以用DFS(广度优先搜索)优化时间复杂度。

  • 使用FIFO(先进先出)队列代替优先队列,优化了降低键值T2的操作为O(1)
  • 松弛操作改为

    if d[v] = +∞ {
        d[v] = d[u] + 1
        enqueue(Q, v)
    }

优化了取出键值最小点的时间T1 = O(1)

总的时间复杂度


TIME = V + E

到此这篇关于Dijkstra算法与Prim算法的异同案例详解的文章就介绍到这了,更多相关Dijkstra算法与Prim算法的异同内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Dijkstra算法与Prim算法的异同案例详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++最短路径Dijkstra算法的分析与具体实现详解

经典的求解最短路径算法有这么几种:广度优先算法、Dijkstra算法、Floyd算法。本文是对 Dijkstra算法的总结,该算法适用于带权有向图,可求出起始顶点到其他任意顶点的最小代价以及对应路径,希望对大家有所帮助
2023-03-10

JavaScript实现LRU算法的示例详解

不知道屏幕前的朋友们,有没有和我一样,觉得LRU算法原理很容易理解,实现起来却很复杂。所以本文就为大家整理了一下实现的示例代码,需要的可以参考一下
2023-05-17

Java实现与JS相同的Des加解密算法完整实例

本文实例讲述了Java实现与JS相同的Des加解密算法。分享给大家供大家参考,具体如下:这里演示java与js实现相同的des加解密算法,不多说,不废话,直接上代码一、java实现package com.lyz.base.des;impor
2023-05-30

java算法之二分查找法的实例详解

java算法之二分查找法的实例详解原理假定查找范围为一个有序数组(如升序排列),要从中查找某一元素,如果该元素在此数组中,则返回其索引,否则返回-1。通过数组长度可取出中间位置元素的索引,将其值与目标值比较,如果中间位置元素值大于目标值,则
2023-05-31

详解Go语言中方法与函数的异同

在 go 中,方法与类型相关,通过类型名.方法名调用,可修改接收者值;而函数独立于类型,直接通过函数名调用。方法与函数的区别:方法与类型相关,函数独立于类型。方法通过类型名.方法名调用,函数直接通过函数名调用。方法可修改接收者值,函数不可。
详解Go语言中方法与函数的异同
2024-04-03

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录