我的编程空间,编程开发者的网络收藏夹
学习永远不晚

慢SQL治理的经典案例分享

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

慢SQL治理的经典案例分享

一、全表扫描

1. 案例

SELECT count(*) AS tmp_count FROM ( 
SELECT * FROM `XXX_rules` WHERE 1 = 1 ORDER BY gmt_create DESC ) a

2. 溯源

在分页查询治理的文章里已经介绍过我们系统旧的分页查询逻辑,上面的查询sql明显就是分页查询获取总记录数,通过XXX_rules表的分页查询接口溯源,找到发起调用的页面是我们小二后台的一个操作商家准入的页面,页面打开后直接调用分页查询接口,除了分页参数,不传入其他任何查询参数,导致扫描全表。

3. 分析

灵魂拷问:为什么要扫描全表?全表数据展示到页面,花里胡哨的数据有用吗?

调研:和经常使用这个页面的运营聊后了解到,打开页面查询出的全表数据对运营是没有用的,他们根本不看这些数据。运营的操作习惯是拿到商家id,在页面查询框中输入商家id,查到商家数据后进行操作。

4. 解决方案

由此优化方案就很明朗了:打开页面时不直接查询全量数据,等运营输入商家id后,将商家id作为参数进行查询。XXX_rules表中,商家id这一常用查询条件设置为索引,再结合分页查询优化,全表扫描慢sql得以解决。

优化后的小二后台页面如下:

打开页面时未查询任何数据,查询条件商家账户为必填项。

优化后的sql为:

SELECT count(*) AS tmp_count FROM ( 
SELECT * FROM `xxx_rules` WHERE 1 = 1 AND `rule_value` = '2928597xxx' ) a

执行EXPLAIN得到结果如下:

可以看到命中了索引,扫描行数为3,查询速度明显提高。

5. 思考

扫描全表治理简单来说就是加入查询条件,命中索引,去除全表扫描查询,虽然有些粗暴,但并不是没有道理。实际业务场景中,很少有要扫描全表获取全部数据的情况,限制调用上游必须传入查询条件,且该查询条件能命中索引,能很大程度上避免慢sql。

另外,再引申下,XXX_rules初始的用意是准入表,记录金融货主维度的准入情况,最多也就几千条数据,但是很多同事将这张表理解为规则表,写入很多业务相关规则,导致这个表膨胀到一百多万条数据,表不clean了。这就涉及到数据表的设计使用,明确表的使用规范,不乱写入数据,能给后期维护带来很大的便利。

二、索引混乱

1. 示例

2. 分析

除了时间、操作人字段,XXX_rules表就rule_name、rule_value、status、product_code四个字段,表的索引对这四个字段做各种排列组合。存在如下问题:

  • rule_name离散度不高,放在索引首位不合适;
  • 前三个索引重合度很高;

显然是对索引的命中规则不够了解。XXX_rules表很多业务有定时任务对其写入删除,索引多、混乱,对性能有很大的影响。

高性能的索引有哪些,再来回顾下:

  • 独立的列:索引列不能是表达式的一部分;
  • 选择区分度高的列作为索引;
  • 选择合适的索引列顺序:将选择性高的索引列放在最前列;
  • 覆盖索引:查询的列均在索引中,不需要回查聚簇索引;
  • 使用索引扫描来做排序;
  • 在遵守最左前缀的原则下,尽量扩展索引,而不是创建索引。

但凡记得第3和6规则,也不至于把索引建成这样。

3. 治理

对索引进行整合如下:

系统中有很多任务拉取整个产品下的准入记录,然后进行处理,所以将区分度较高的product_code放在索引首位,然后添加rule_name、status字段到索引里,进一步过滤数据,减少扫描行数,避免慢sql。针对常用的rule_value查询条件,可以命中UK,因此不用单独建立索引。

三、非必要排序

1. 问题描述

很多业务逻辑中,需要拉取满足某个条件的记录列表,查询的sql语句带有order by,记录比较多的情况,排序代价往往很大,但是查询出来的记录是否有序对业务逻辑没有影响,比如分页治理里讨论的count语句,只需要统计条数,order by对条数没有影响,再比如查出记录列表后,不依赖记录的顺序遍历列表处理数据,这时候order by多此一举。

2. 解决方案

查询sql无limit语句,且业务处理逻辑不依赖于order by后列表记录的顺序,则去除查询sql中的order by语句。

四、粗粒度查询

1. 问题描述

业务中有很多定时任务,扫描某个表中某个产品下所有数据,对数据进行处理,比如:

SELECT * FROM XXX_rules
WHERE rule_name = 'apf_distributors'
AND status = '00'
AND product_code = 'ADVANCE'

三个查询条件都是区分度不高的列,查出的数据有27W条,加索引意义也不大。

2. 分析

实际业务量没那么大,顶多几千条数据,表里的数据是从上游同步过来的,最好的办法是让上游精简数据,但是由于业务太久远,找上游的人维护难度太大,因此只能想其他的办法。

这个定时任务目的是拉出XXX_rules表的某些产品下的数据,和另一张表数据对比,更新有差异的数据。每天凌晨处理,对时效性没有很高的要求,因此,能不能转移任务处理的地方,不在本应用机器上实时处理那么多条数据?

3. 解决方案

数据是离线任务odps同步过来的,首先想到的就是dataWork数据处理平台。

建立数据对比任务,将定时任务做的数据对比逻辑放到dataWork上用sql实现,每天差异数据最多几百条,且结果集含有区分度很高的列,将差异数据写入odps表,再将数据回流到idb。

新建定时任务,通过回流回来的差异数据中区分度高的列作为查询条件查询XXX_rules,更新XXX_rules,解决了慢sql问题。

这个方法的前提是对数据实效性要求不高,且离线产出的结果集很小。

五、OR导致索引失效

1. 案例

SELECT count(*)
FROM XXX_level_report
WHERE 1 = 1
AND EXISTS (
SELECT 1
FROM XXX_white_list t
WHERE (t.biz_id = customer_id
OR customer_id LIKE CONCAT(t.biz_id, '@%'))
AND t.status = 1
AND (t.start_time <= CURRENT_TIME
OR t.start_time IS NULL)
AND (t.end_time >= CURRENT_TIME
OR t.end_time IS NULL)
AND t.biz_type = 'GOODS_CONTROL_BLACKLIST'
)

2. 分析

explain上述查询语句,得到结果如下:

XXX_white_list表有将biz_id作为索引,这里查询XXX_white_list表有传入biz_id作为查询条件,为啥explain结果里type为ALL,即扫描全表?索引失效了?索引失效有哪些情况?

索引失效场景:

  • OR查询左右有未命中索引的;
  • 复合索引不满足最左匹配原则;
  • Like以%开头;
  • 需要类型转换;
  • where中索引列有运算;
  • where中索引列使用了函数;
  • 如果mysql觉得全表扫描更快时(数据少时)

上述查询语句第8行,customer_id为XXX_level_report表字段,未命中XXX_white_list表索引,导致索引失效。

3. 解决方案

这个语句用condition、枚举、join花里胡哨的代码拼接起来的,改起来好麻烦,而且看起来“OR customer_id LIKE CONCAT(t.biz_id, '@%')”这句不能直接删掉。最后重构了该部分的查询语句,去除or查询,解决了慢sql。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

慢SQL治理的经典案例分享

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

慢SQL治理的经典案例分享

菜鸟供应链金融慢sql治理已经有一段时间,自己负责的应用持续很长时间没有慢sql告警,现阶段在推进组内其他成员治理应用慢sql。这里把治理过程中的一些实践拿出来分享下。
sql分页查询2024-12-02

阿里慢SQL治理5大经典案例

菜鸟供应链金融慢sql治理已经有一段时间,自己负责的应用持续很长时间没有慢sql告警,现阶段在推进组内其他成员治理应用慢sql。这里把治理过程中的一些实践拿出来分享下。 菜鸟供应链金融慢sql治理已经有一段时间,自己负责的应用持续很长时间没有慢sql告警
阿里慢SQL治理5大经典案例
2020-10-14

慢 SQL 治理分享

们常听常见的MySQL中有二进制日志binlog、中继日志relaylog、重做回滚日志redolog、undolog等。针对慢查询,还有一种慢查询日志slowlog,用来记录在MySQL中响应时间超过阀值的语句。
SQLSQL2024-12-03

Android Zxing生成二维码经典案例分享

本文实例为大家解析了Zxing生成二维码的经典案例,供大家参考,具体内容如下 1、首先呢,先编译 compile ‘com.google.zxing:core:3.2.1' 2、实战public class QRCode { private
2022-06-06

Go语言中for循环的经典案例分析

for循环问题,在面试中经常都会被问到,并且在实际业务项目中也经常用到for循环,要是没用好,一不下心就掉坑。本文为大家挑选了几个经典的案例,一块来探讨下,看看如何避免掉坑,多积累积累采坑经验
2023-02-09

AWK的10个经典案例分别是怎么样的

本篇文章给大家分享的是有关AWK的10个经典案例分别是怎么样的,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。awk是Linux系统下一个处理文本的编程语言工具,能用简短的程序处
2023-06-05

整理了十个经典的Pandas数据查询案例!

在本文中整理了10个示例,掌握着10个实例你就可以轻松的使用query函数来解决任何查询的问题。

ASP Web.config转换实战案例分享:从理论到实践的成功经验

本文将分享ASP Web.config转换实战案例,从理论到实践,详细讲解如何将Web.config文件从旧版本转换为新版本,助力您的网站顺利运行。
ASP Web.config转换实战案例分享:从理论到实践的成功经验
2024-02-12

成功案例:用Go语言开发的项目经验分享

成功案例:用Go语言开发的项目经验分享随着互联网的快速发展,不少企业开始转型和创新,引入新技术提升业务效率和竞争力。Go语言作为一种高效且易用的开发语言,逐渐受到企业的青睐。今天,我要和大家分享一个成功案例,介绍我们在使用Go语言开发项目中
成功案例:用Go语言开发的项目经验分享
2023-11-04

PHP 防抖技术的应用案例分享和实战经验总结

引言:在我们的日常开发工作中,经常会遇到一些需要响应用户事件的场景,如搜索框的自动补全、监听窗口滚动事件、监听输入框的实时输入等。但是,一些特殊场景下,用户事件的频繁触发会造成多次重复的请求,这对服务器造成不小的压力。为了解决这个问题,我们
2023-10-21

C++技术中的内存管理:内存泄漏的典型案例分析

c++++ 中常见的内存泄漏类型包括栈泄漏、堆泄漏和全局泄漏。本文通过一个实战案例分析了堆泄漏。该示例中,一个动态分配的指针在函数返回时丢失了作用域,但分配的内存未释放,导致内存泄漏。可以使用智能指针、手动内存释放或内存检测工具来防止内存泄
C++技术中的内存管理:内存泄漏的典型案例分析
2024-05-08

分享工程领域中应用静态定位测量原理的案例

静态定位测量原理在工程领域中的应用案例分享摘要:在工程领域中,准确的定位测量对于项目的规划、设计和建设至关重要。静态定位测量原理是一种常见的测量技术,可以提供高精度的位置信息。本文将分享静态定位测量原理在工程领域中的一个应用案例,并附上相应
分享工程领域中应用静态定位测量原理的案例
2023-12-28

【数据库优化实战案例】分享我优化数据库的经验,让你少走弯路,快速提升性能!

本文分享了优化数据库的经验,包括数据库设计、索引优化、查询优化等内容,帮助读者快速提升数据库性能。
【数据库优化实战案例】分享我优化数据库的经验,让你少走弯路,快速提升性能!
2024-02-10

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录