我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python 自动控制原理 control的详细解说

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python 自动控制原理 control的详细解说

传递函数

创建传递函数有两种方式:

import control as ctrl
 
# 方式 1
s = ctrl.tf('s')
sys = 100 / (s ** 2 + 10 * s + 100)
 
# 方式 2
sys = ctrl.tf([100], [1, 10, 100])

对 tf 这个类,它内置的方法可求解 零点、极点、特征参数、特征根

# 求零点
sys.zero()
 
# 求极点
sys.pole()
 
# 特征参数、特征根
sys.damp()

输入响应

# 阶跃动态指标
step_info(sys)
# 阶跃响应
t, response = step_response(sys, T)
 
# 脉冲响应
t, response = impulse_response(sys, T)
 
t, response = initial_response(sys, T)
t, response = forced_response(sys, T)

T 是响应的时间,可以是 float (即时间上限),也可以是数组

阶跃动态指标是 dict 类型,包括:'RiseTime', 'SettlingTime', 'SettlingMin', 'SettlingMax', 'Overshoot', 'Undershoot', 'Peak', 'PeakTime', 'SteadyStateValue'

系统绘图

# Nyquist图, 可传入列表
nyquist_plot(sys)
 
# Bode图, 可传入列表
bode_plot(sys)
 
# 根轨迹图
root_locus(sys)

绘图使用的是 matplotlib.pyplot,所以执行完函数后,要加上 plt.show() 才会显示图像

Laplace 逆变换

可能是我太弱找不到这个包的 Laplace 逆变换函数,也可能是这个包真的没有这个函数

于是我利用 sympy 这个包求解:定义时域响应这个类,__call__ 使其可以计算时间数组 (np.array) 的响应

import sympy
class Time_Response:
    ''' 时域响应'''
    s, t = sympy.symbols('s, t')
 
    def __init__(self, fun, doprint=False):
        ''' fun: 返回关于s的传递函数的 function
            doprint: 输出公式'''
        sys = fun(self.s)
        self.f_t = sympy.integrals.inverse_laplace_transform(sys, s=self.s, t=self.t)
        if doprint:
            sympy.pprint(self.f_t)
 
    def __call__(self, time):
        ''' 使自身可作为函数被调用'''
        response = list(map(lambda i: float(self.f_t.subs({self.t: i})), time))
        return np.array(response)

设置 doprint 为 True,则可以输出时域响应的方程 —— 但是问题在于,自动控制原理里面的 Laplace 变换是默认 F(s) 各阶导数的初始值均为 0 的,这个条件我没有办法加入到 sympy 的求解过程里,所以结果看起来就有些奇怪

import control as ctrl
import matplotlib.pyplot as plt
import numpy as np
 
# 自定义类所在的模块
from mod.math_model import Time_Response
orange = 'orange'
blue = 'deepskyblue'
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
f_t = Time_Response(lambda s: 100 / (s ** 2 + 10 * s + 100) / s, doprint=True)
t = np.linspace(0, 1, 100)
plt.subplot(1, 2, 1)
plt.title('sympy 计算')
plt.plot(t, f_t(t), c=orange)
s = ctrl.tf('s')
sys = 100 / (s ** 2 + 10 * s + 100)
t, response = ctrl.step_response(sys, T=1)
plt.subplot(1, 2, 2)
plt.title('control 计算')
plt.plot(t, response, c=blue)
plt.show()

对比 sympy 和 control 求解的响应曲线:一毛一样

到此这篇关于Python 自动控制原理 control的详细解说的文章就介绍到这了,更多相关Python control内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python 自动控制原理 control的详细解说

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

SpringBoot自动装配的原理详解分析

这篇文章主要介绍了SpringBoot自动装配的原理详解分析,文章通过通过一个案例来看一下自动装配的效果展开详情,感兴趣的小伙伴可以参考一下
2022-11-13

计算机可以进行自动控制处理的原因是什么

这篇文章将为大家详细讲解有关计算机可以进行自动控制处理的原因是什么,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。因为其能够“存储程序”。存储程序是计算机能自动控制处理的基础,其原理是将根据特定问题编写的程
2023-06-15

Java注解机制之Spring自动装配实现原理的示例分析

小编给大家分享一下Java注解机制之Spring自动装配实现原理的示例分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧! Java中使用注解的情况主要在SpringMVC(Spring Boot等),注解实际上相当于一种标
2023-05-31

PHP中的命名空间和自动加载机制是如何工作的?(请解释PHP命名空间和自动加载的原理。)

PHP命名空间用于组织代码,避免命名冲突,而自动加载机制则自动加载类和接口。命名空间使用反斜杠表示,例如namespaceMyAppModels;。自动加载函数使用spl_autoload_register()注册,并根据类名确定文件位置。命名空间和自动加载协同工作,简化代码管理、避免冲突、提高可读性和性能。
PHP中的命名空间和自动加载机制是如何工作的?(请解释PHP命名空间和自动加载的原理。)
2024-04-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录