我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python决策树预测学生成绩等级实现详情

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python决策树预测学生成绩等级实现详情

1.数据准备

1.1 引入头文件

stu-001

写入头文件之前,需要下载安装所必须的依赖包。有的无法使用pip安装的内容,使用手动导入依赖的方式.

1.2 把student_1.csv数据拖入代码的同一文件夹下,同时读取文件中的数据

stu-002

1.3 特征选取

课件中选取16个特征值,这里我采用了所有的特征值进行处理。

stu-003

2.数据处理

2.1 对G1、G2、G3处理

对于离散值进行连续处理,同时设置lambda函数计算G1、G2、G3。

stu-004

2.2 同样对Pedu参数进行连续值处理

stu-005

2.3 由于数据集中每个参数差异比较大,所以这里把特征参数统一改为数字形式

stu-006

2.4 对于当前处理过的数据集,划分训练集和测试集,并设置好随机种子等其他参数

stu-007

3.训练得到的模型

3.1 决策树

3.1.1 开始对训练集中的数据进行训练

stu-008

训练完的模型用来设置图像参数进行可视化展现。

stu-009

3.1.2 利用已经训练好的模型来预测G3的值

stu-010

对训练好的模型进行打分。

stu-011

3.1.3 对模型中的参数进行优化,输出优化后最好的分数

stu-012

3.1.4 优化后的模型来绘制决策树

stu-013

输出优化后的分数。

stu-014

3.2 集成学习

重新划分数据集用于训练模型。

stu-015

3.2.1 Decision Tree

这里采用集成学习的多个决策树方式进行训练模型,以及模型的评估。

stu-016

3.2.2 Bagging算法

这里采用集成学习的Bagging算法进行训练模型,对模型做出分数估测。

stu-017

3.2.3 这里采用集成学习的Random Forest算法进行训练模型,对模型做出分数估测

stu-018

3.2.4 这里采用集成学习的AdaBoost算法进行训练模型,对模型做出分数估测

stu-019

3.2.5 这里采用集成学习的GBDT算法进行训练模型,对模型做出分数估测

stu-020

4.评价结果:

模型得分
决策树(优化前)0.806
决策树(优化后)0.848
多个决策树0.831
Bagging0.890
Random Forest0.882
AdaBoost0.806
GBDT0.865

5.结论分析

根据决策树和集成学习两大类的训练模型可以看出:两种方式实现各有千秋,同样由优缺点。

决策树在优化参数前后预测结果有了较明显的提升,并且有可视化的图片便于观察。集成学习中的Bagging算法对于预测结果是最好的,随之的得分情况也是最高。但是AdaBoost算法的表现就相对不够。

以上就是python决策树预测学生成绩等级实现详情的详细内容,更多关于python决策树预测学生成绩等级的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python决策树预测学生成绩等级实现详情

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录