pandas如何实现滑动窗口
今天小编给大家分享一下pandas如何实现滑动窗口的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
介绍
窗口函数(Window Function)是一种在关系型数据库中使用的函数,通常用于计算某个范围内的数据。在数据分析中,窗口函数也是一种非常有用的工具,可以轻松地对数据进行滑动窗口处理,计算移动平均值、移动总和等等。
示例数据
为了演示窗口函数的使用,我们将使用一个示例数据集,其中包含每月的销售数据。
import pandas as pd data = {'Month': ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'], 'Sales': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]} df = pd.DataFrame(data)
df Month Sales0 Jan 101 Feb 202 Mar 303 Apr 404 May 505 Jun 606 Jul 707 Aug 808 Sep 909 Oct 10010 Nov 11011 Dec 120
移动平均值
移动平均值是一种常见的窗口函数,用于计算一段时间内的平均值。在pandas中,我们可以使用rolling函数来计算移动平均值。
df['MA'] = df['Sales'].rolling(window=3).mean()
在上面的代码中,我们使用了rolling函数,并将窗口大小设置为3,即计算每三个月的平均值。计算出的结果将存储在一个名为“MA”的新列中。
移动总和
移动总和是另一种常见的窗口函数,用于计算一段时间内的总和。在pandas中,我们可以使用rolling函数来计算移动总和。
df['MS'] = df['Sales'].rolling(window=3).sum()
在上面的代码中,我们使用了rolling函数,并将窗口大小设置为3,即计算每三个月的总和。计算出的结果将存储在一个名为“MS”的新列中。
df['MA'] = df['Sales'].rolling(window=3).mean()... df Month Sales MA0 Jan 10 NaN1 Feb 20 NaN2 Mar 30 20.03 Apr 40 30.04 May 50 40.05 Jun 60 50.06 Jul 70 60.07 Aug 80 70.08 Sep 90 80.09 Oct 100 90.010 Nov 110 100.011 Dec 120 110.0
最大值和最小值
除了移动平均值和移动总和之外,我们还可以使用rolling函数来计算一段时间内的最大值和最小值。
df['Max'] = df['Sales'].rolling(window=3).max()df['Min'] = df['Sales'].rolling(window=3).min()
在上面的代码中,我们使用了rolling函数,并将窗口大小设置为3,分别计算了最大值和最小值。计算出的结果将存储在名为“Max”和“Min”的新列中。
df Month Sales MA Max Min Sum0 Jan 10 NaN NaN NaN NaN1 Feb 20 NaN NaN NaN NaN2 Mar 30 20.0 30.0 10.0 60.03 Apr 40 30.0 40.0 20.0 90.04 May 50 40.0 50.0 30.0 120.05 Jun 60 50.0 60.0 40.0 150.06 Jul 70 60.0 70.0 50.0 180.07 Aug 80 70.0 80.0 60.0 210.08 Sep 90 80.0 90.0 70.0 240.09 Oct 100 90.0 100.0 80.0 270.010 Nov 110 100.0 110.0 90.0 300.011 Dec 120 110.0 120.0 100.0 330.0
以上就是“pandas如何实现滑动窗口”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注编程网行业资讯频道。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341