我的编程空间,编程开发者的网络收藏夹
学习永远不晚

解析pandas apply() 函数用法(推荐)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

解析pandas apply() 函数用法(推荐)

理解 pandas 的函数,要对函数式编程有一定的概念和理解。函数式编程,包括函数式编程思维,当然是一个很复杂的话题,但对今天介绍的 apply() 函数,只需要理解:函数作为一个对象,能作为参数传递给其它函数,也能作为函数的返回值。

函数作为对象能带来代码风格的巨大改变。举一个例子,有一个类型为 list 的变量,包含 从 1 到 10 的数据,需要从其中找出能被 3 整除的所有数字。用传统的方法:


def can_divide_by_three(number):
    if number % 3 == 0:
        return True
    else:
        return False

selected_numbers = []
for number in range(1, 11):
    if can_divide_by_three(number):
        selected_numbers.append(number)

循环是不可少的,因为 can_divide_by_three() 函数只用一次,考虑用 lambda 表达式简化:


divide_by_three = lambda x : True if x % 3 == 0 else False

selected_numbers = []
for number in range(1, 11):
    if divide_by_three(item):
        selected_numbers.append(item)

以上是传统编程思维方式,而函数式编程思维则完全不同。我们可以这样想:从 list 中取出特定规则的数字,能不能只关注和设置规则,循环这种事情交给编程语言去处理呢?当然可以。当编程人员只关心规则(规则可能是一个条件,或者由某一个 function 来定义),代码将大大简化,可读性也更强。

Python 语言提供 filter() 函数,语法如下:


filter(function, sequence)

filter() 函数的功能:对 sequence 中的 item 依次执行 function(item),将结果为 True 的 item 组成一个 List/String/Tuple(取决于 sequence 的类型)并返回。有了这个函数,上面的代码可以简化为:


divide_by_three = lambda x : True if x % 3 == 0 else False
selected_numbers = filter(divide_by_three, range(1, 11))

将 lambda 表达式放在语句中,代码简化到只需要一句话就够了:


selected_numbers = filter(lambda x: x % 3 == 0, range(1, 11))

Series.apply()

回到主题, pandas 的 apply() 函数可以作用于 Series 或者整个 DataFrame,功能也是自动遍历整个 Series 或者 DataFrame, 对每一个元素运行指定的函数。

举一个例子,现在有这样一组数据,学生的考试成绩:


  Name Nationality  Score
   张           汉    400
   李           回    450
   王           汉    460

如果民族不是汉族,则总分在考试分数上再加 5 分,现在需要用 pandas 来做这种计算,我们在 Dataframe 中增加一列。当然如果只是为了得到结果, numpy.where() 函数更简单,这里主要为了演示 Series.apply() 函数的用法。


import pandas as pd

df = pd.read_csv("studuent-score.csv")
df['ExtraScore'] = df['Nationality'].apply(lambda x : 5 if x != '汉' else 0)
df['TotalScore'] = df['Score'] + df['ExtraScore']

对于 Nationality 这一列, pandas 遍历每一个值,并且对这个值执行 lambda 匿名函数,将计算结果存储在一个新的 Series 中返回。上面代码在 jupyter notebook 中显示的结果如下:

  Name Nationality  Score  ExtraScore  TotalScore
0    张           汉    400           0         400
1    李           回    450           5         455
2    王           汉    460           0         460

apply() 函数当然也可执行 python 内置的函数,比如我们想得到 Name 这一列字符的个数,如果用 apply() 的话:


df['NameLength'] = df['Name'].apply(len)

apply 函数接收带有参数的函数

根据 pandas 帮助文档 pandas.Series.apply — pandas 1.3.1 documentation,该函数可以接收位置参数或者关键字参数,语法如下:


Series.apply(func, convert_dtype=True, args=(), **kwargs)

对于 func 参数来说,该函数定义中的第一个参数是必须的,所以 funct() 除第一个参数之外的其它参数则被视为额外的参数,作为参数来传递。我们仍以刚才的示例进行说明,假设除汉族外,其他少数名族有加分,我们把加分放在函数的参数中,先定义一个 add_extra() 函数:


def add_extra(nationality, extra):
    if nationality != "汉":
        return extra
    else:
        return 0

对 df 新增一列:


df['ExtraScore'] = df.Nationality.apply(add_extra, args=(5,))

位置参数通过 args = () 来传递参数,类型为 tuple。也可用下面的方法调用:


df['ExtraScore'] = df.Nationality.apply(add_extra, extra=5)

运行后结果为:

  Name Nationality  Score  ExtraScore
0    张           汉    400           0
1    李           回    450           5
2    王           汉    460           0

将 add_extra 作为 lambda 函数:


df['Extra'] = df.Nationality.apply(lambda n, extra : extra if n == '汉' else 0, args=(5,))

下面继续讲解关键字参数。假设我们对不同的民族可以给不同的加分,定义 add_extra2() 函数:


def add_extra2(nationaltiy, **kwargs):
    return kwargs[nationaltiy]
       
df['Extra'] = df.Nationality.apply(add_extra2, 汉=0, 回=10, 藏=5)

运行结果为:

  Name Nationality  Score  Extra
0    张           汉    400      0
1    李           回    450     10
2    王           汉    460      0

对照 apply 函数的语法,不难理解。

DataFrame.apply()

DataFrame.apply() 函数则会遍历每一个元素,对元素运行指定的 function。比如下面的示例:


import pandas as pd
import numpy as np

matrix = [
    [1,2,3],
    [4,5,6],
    [7,8,9]
]

df = pd.DataFrame(matrix, columns=list('xyz'), index=list('abc'))
df.apply(np.square)

对 df 执行 square() 函数后,所有的元素都执行平方运算:


    x   y   z
a   1   4   9
b  16  25  36
c  49  64  81

如果只想 apply() 作用于指定的行和列,可以用行或者列的 name 属性进行限定。比如下面的示例将 x 列进行平方运算:


df.apply(lambda x : np.square(x) if x.name=='x' else x)

    x  y  z
a   1  2  3
b  16  5  6
c  49  8  9

下面的示例对 x 和 y 列进行平方运算:


df.apply(lambda x : np.square(x) if x.name in ['x', 'y'] else x)

    x   y  z
a   1   4  3
b  16  25  6
c  49  64  9

下面的示例对第一行 (a 标签所在行)进行平方运算:


df.apply(lambda x : np.square(x) if x.name == 'a' else x, axis=1)

默认情况下 axis=0 表示按列,axis=1 表示按行。

apply() 计算日期相减示例

平时我们会经常用到日期的计算,比如要计算两个日期的间隔,比如下面的一组关于 wbs 起止日期的数据:


    wbs   date_from     date_to
  job1  2019-04-01  2019-05-01
  job2  2019-04-07  2019-05-17
  job3  2019-05-16  2019-05-31
  job4  2019-05-20  2019-06-11

假定要计算起止日期间隔的天数。比较简单的方法就是两列相减(datetime 类型):


import pandas as pd
import datetime as dt

wbs = {
    "wbs": ["job1", "job2", "job3", "job4"],
    "date_from": ["2019-04-01", "2019-04-07", "2019-05-16","2019-05-20"],
    "date_to": ["2019-05-01", "2019-05-17", "2019-05-31", "2019-06-11"]
}

df = pd.DataFrame(wbs)
df['elpased'] = df['date_to'].apply(pd.to_datetime) -   
               df['date_from'].apply(pd.to_datetime)

apply() 函数将 date_fromdate_to 两列转换成 datetime 类型。我们 print 一下 df:


    wbs   date_from     date_to elapsed
0  job1  2019-04-01  2019-05-01 30 days
1  job2  2019-04-07  2019-05-17 40 days
2  job3  2019-05-16  2019-05-31 15 days
3  job4  2019-05-20  2019-06-11 22 days

日期间隔已经计算出来,但后面带有一个单位 days,这是因为两个 datetime 类型相减,得到的数据类型是 timedelta64,如果只要数字,还需要使用 timedeltadays 属性转换一下。


elapsed= df['date_to'].apply(pd.to_datetime) -
    df['date_from'].apply(pd.to_datetime)
df['elapsed'] = elapsed.apply(lambda x : x.days)

使用 DataFrame.apply() 函数也能达到同样的效果,我们需要先定义一个函数 get_interval_days() 函数的第一列是一个 Series 类型的变量,执行的时候,依次接收 DataFrame 的每一行。


import pandas as pd
import datetime as dt

def get_interval_days(arrLike, start, end):   
    start_date = dt.datetime.strptime(arrLike[start], '%Y-%m-%d')
    end_date = dt.datetime.strptime(arrLike[end], '%Y-%m-%d') 

    return (end_date - start_date).days


wbs = {
    "wbs": ["job1", "job2", "job3", "job4"],
    "date_from": ["2019-04-01", "2019-04-07", "2019-05-16","2019-05-20"],
    "date_to": ["2019-05-01", "2019-05-17", "2019-05-31", "2019-06-11"]
}

df = pd.DataFrame(wbs)
df['elapsed'] = df.apply(
    get_interval_days, axis=1, args=('date_from', 'date_to'))

参考

Pandas的Apply函数——Pandas中最好用的函数
pandas.Series.apply — pandas 1.3.1 documentation

到此这篇关于pandas apply() 函数用法的文章就介绍到这了,更多相关pandas apply() 函数内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

解析pandas apply() 函数用法(推荐)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

pandas的apply函数用法详解

本文主要介绍了pandas的apply函数用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-01-11

Pandas中map(),applymap(),apply()函数的使用方法

本文主要介绍了Pandas中map(),applymap(),apply()函数的使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-02-22

SQL IFNULL()函数详细解析(最新推荐)

mysql IFNULL函数简介MySQL IFNULL函数是MySQL控制流函数之一,它接受两个参数,如果不是NULL,则返回第一个参数。 否则,IFNULL函数返回第二个参数。两个参数可以是文字值或表达式。以下说明了IFNULL函
2023-01-06

SQL IFNULL()函数详细解析(最新推荐)

IFNULL() 函数用于判断第一个表达式是否为 NULL,如果为 NULL 则返回第二个参数的值,如果不为 NULL 则返回第一个参数的值,这篇文章主要介绍了SQL IFNULL()函数详细解析,需要的朋友可以参考下
2023-01-06

python中pandas库的iloc函数用法解析

在Pandas中,.iloc是一种用于基于整数位置进行索引的属性,可以用于获取DataFrame或Series中的数据,这篇文章主要介绍了python中pandas库的iloc函数用法,需要的朋友可以参考下
2023-05-19

Python Pandas pandas.read_sql_query函数实例用法分析

Pandas是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发
2022-06-02

vue3中ref和reactive的用法和解析(推荐)

这篇文章主要介绍了vue3的ref和reactive的用法和解析,开始部分讲解了ref,reactive的使用实例,如何进行类型的标注,配合ts这么使用,接着讲解了两者的区别,分别需要注意的点,还有ref的顶层自动解包,需要的朋友可以参考下
2023-03-19

C++中的String的常用函数用法(最新推荐)

这篇文章主要介绍了C++中的String的常用函数用法总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-02-06

JS中call(),apply(),bind()函数的区别与用法详解

这篇文章主要介绍了JS中call(),apply(),bind()函数的高级用法详解,需要的朋友可以参考下
2022-12-10

详解pandas库常用函数的介绍和用法

pandas库常用函数介绍及用法详解引言:pandas是一个开源、灵活而又高效的数据分析和操作工具,被广泛应用于数据科学、机器学习、金融、统计学等领域。本文将介绍pandas库常用的函数及其用法,希望能够帮助读者更好地理解和使用pand
详解pandas库常用函数的介绍和用法
2024-01-24

使用Pandas 实现MySQL日期函数的解决方法

这篇文章主要介绍了用Pandas 实现MySQL日期函数的效果,Python是很灵活的语言,达成同一个目标或有多种途径,我提供的只是其中一种解决方法,需要的朋友可以参考下
2023-02-22

使用Pandas实现MySQL窗口函数的解决方法

本文主要介绍MySQL中的窗口函数row_number()、lead()/lag()、rank()/dense_rank()、first_value()、count()、sum()如何使用pandas实现,同时二者又有什么区别,感兴趣的朋友一起看看吧
2023-02-22

Drupal7之drupal_static函数用法解析

Drupal7 非常强大,其强大核心之一是entity field模式,比如node/taxonomy term/ user 都是一种entity, 并且支持field模式,也就是用户可以随意的添加新的field给node/taxonomy
2022-06-12

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录