我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++回溯与分支限界算法分别解决背包问题详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++回溯与分支限界算法分别解决背包问题详解

算法思想

分支限界法与回溯法的求解目标不同。

回溯法的求解目标是找出解空间中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。

由于求解目标不同,导致分支限界法与回溯法对解空间的搜索方式也不相同。

回溯法以深度优先的方式搜索解空间,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。

回溯法对解空间做深度优先搜索时,有递归回溯和迭代回溯(非递归)两种方法,但一般情况下用递归方法实现回溯法。

常见的两种分支限界法

 先进先出(FIFO)队列式:在先进先出的分支限界法中,用队列作为组织活结点表的数据结构,并按照队列先进先出的原则选择结点作为扩展结点。  

   优先队列(PQ):用优先队列作为组织活结点表的数据结构。

回溯代码

#include<stdio.h>
int n,c,bestp;//物品的个数,背包的容量,最大价值
int p[10000],w[10000],x[10000],bestx[10000];//物品的价值,物品的重量,x[i]暂存物品的选中情况,物品的选中情况
void Backtrack(int i,int cp,int cw)
{ //cw当前包内物品重量,cp当前包内物品价值
    int j;
    if(i>n)//回溯结束
    {
        if(cp>bestp)
        {
            bestp=cp;
            for(i=0;i<=n;i++) bestx[i]=x[i];
        }
    }
    else 
        for(j=0;j<=1;j++)  
        {
            x[i]=j;
            if(cw+x[i]*w[i]<=c)  
            {
                cw+=w[i]*x[i];
                cp+=p[i]*x[i];
                Backtrack(i+1,cp,cw);
                cw-=w[i]*x[i];
                cp-=p[i]*x[i];
            }
        }
}
int main()
{
    int i;
    bestp=0; 
    printf("请输入背包最大容量:\n");
    scanf("%d",&c);
    printf("请输入物品个数:\n");
    scanf("%d",&n);
    printf("请依次输入物品的重量:\n");
    for(i=1;i<=n;i++) 
        scanf("%d",&w[i]);
    printf("请依次输入物品的价值:\n");
    for(i=1;i<=n;i++) 
        scanf("%d",&p[i]);
    Backtrack(1,0,0);
    printf("最大价值为:\n");
    printf("%d\n",bestp);
    printf("被选中的物品依次是(0表示未选中,1表示选中)\n");
    for(i=1;i<=n;i++) 
        printf("%d ",bestx[i]);
    printf("\n");
    return 0;
}

回溯结果

分支限界代码

#include<iostream>
#include<queue>
using namespace std;
const int maxn=99; 
int n,c;
int w[maxn];
int v[maxn];
int bestv=0;
int bestx[maxn];
int total=1;        //解空间中的节点数累计,全局变量 
struct nodetype        //队列中的结点类型
{
    int no;            //结点编号,从1开始 
    int i;            //当前结点在搜索空间中的层次 
    int w;            //当前结点的总重量 
    int v;            //当前结点的总价值 
    int x[maxn];    //当前结点包含的解向量 
    double ub;        //上界 
};
void input()
{
    cout<<"请输入物品的个数:"<<endl;
    cin>>n;
    cout<<"请输入每个物品的重量及价值(如5 4):"<<endl;
    for(int i = 1; i <= n; i++)
    {
        cin>>w[i]>>v[i];
    }
    cout<<"请输入背包的容量:"<<endl;
    cin>>c;
}
void bound(nodetype &e)        //计算分支结点e的上界 
{
    int i=e.i+1;        //考虑结点e的余下物品
    int sumw=e.w;
    double sumv=e.v;
    while((sumw+w[i]<=c)&&i<=n) 
    {
        sumw+=w[i];
        sumv+=v[i];
        i++;
    }
    if(i<=n)            //余下物品只能部分装入 
    e.ub=sumv+(c-sumw)*v[i]/w[i];
    else e.ub=sumv; 
} 
void enqueue(nodetype e,queue<nodetype> &qu)
//结点e进队qu 
{
    if(e.i==n)                //到达叶子节点,不在扩展对应一个解 
    {
        if(e.v>bestv)        //找到更大价值的解 
        {
            bestv=e.v;
            for(int j=1;j<=n;j++)
            bestx[j]=e.x[j];
        }
    }
    else qu.push(e);        //非叶子结点进队
} 
void bfs()
{
    int j;
    nodetype e,e1,e2;
    queue<nodetype> qu;
    e.i=0;
    e.w=0;
    e.v=0;
    e.no=total++;
    for(j=1;j<=n;j++)
    e.x[j]=0;
    bound(e);
    qu.push(e);
    while(!qu.empty())
    {
        e=qu.front();qu.pop();    //出队结点e 
        if(e.w+w[e.i+1]<=c)        //剪枝,检查左孩子结点 
        {
            e1.no=total++;        //建立左孩子结点 
            e1.i=e.i+1;
            e1.w=e.w+w[e1.i];
            e1.v=e.v+v[e1.i];
            for(j=1;j<=n;j++)
            e1.x[j]=e.x[j];
            e1.x[e1.i]=1;
            bound(e1);        //求左孩子的上界 
            enqueue(e1,qu);    //左孩子结点进队 
        }
        e2.no=total++;
        e2.i=e.i+1;
        e2.w=e.w;
        e2.v=e.v; 
        for(j=1;j<=n;j++)
            e2.x[j]=e.x[j];
        e2.x[e2.i]=0;
        bound(e2);
        if(e2.ub>bestv)        //若右孩子结点可行,则进队,否则被剪枝 
        enqueue(e2,qu);    
    }
} 
void output()
{
    cout<<"最优值是:"<<bestv<<endl;
    cout<<"(";
    for(int i=1;i<=n;i++)
        cout<<bestx[i]<<" ";
    cout<<")";
}
int main()
{
    input();
    bfs();
    output();
    return 0;
 } 

分支限界结果

到此这篇关于C++回溯与分支限界算法分别解决背包问题详解的文章就介绍到这了,更多相关C++背包问题内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++回溯与分支限界算法分别解决背包问题详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录