我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Matlab利用垂距法实现提取离散坐标数据特征点

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Matlab利用垂距法实现提取离散坐标数据特征点

垂距法是指根据中间顶点到其前、后两相邻顶点连线的距离的大小,来确定是否保留该顶点的一种 线要素顶点压缩 算法。当求得的距离大于给定的限差(阈值)时,保留该顶点,否则删除该顶点(如下图所示)。

一般使用所有点到直线距离的 中位数 作为阈值。同时,本人所编写的工具函数不仅可以处理二维数据点,三维甚至更高维度的数据点依旧可以处理。

1.工具函数

怕大家找不到工具函数,这里放在最前面啦:

function [newPntSet,vertPnt]=getFeaturePnt(pntSet)
% @author:slandarer
% newPntSet : 特征点
% vertPnt   : 原始曲线垂足
[rows,cols]=size(pntSet);
if rows<4||cols<2,error('数据点过少或维度异常');end

innerPntSet=pntSet(2:end-1,:);             % 内部点
adjPnt1V=innerPntSet-pntSet(1:end-2,:);    % 当前点与前一点向量
adjPnt2V=pntSet(3:end,:)-pntSet(1:end-2,:);% 当前点的两个相邻点向量
adjPnt2V=adjPnt2V./vecnorm(adjPnt2V')';    % 归一化

lVert=sum(adjPnt1V.*adjPnt2V,2);   
vertPnt=adjPnt2V.*lVert+pntSet(1:end-2,:); % 获取垂足
vertL=vecnorm((innerPntSet-vertPnt)');     % 计算垂线距离
vertL(isinf(vertL)|isnan(vertL))=0;        % 修正/0的情况
innerPntSet(vertL<median(vertL),:)=[];     % 删掉特征性不强的点
newPntSet=[pntSet(1,:);innerPntSet;pntSet(end,:)];
end

2.基础使用(二维)

这里随机生成一组二维数据(两列),取出特征点后并绘图:

% 随机构造数据
X=linspace(0,25,10)';
Y=randi([0,10],[10,1]);
pntSet=[X,Y];
% 获取特征点
[nPntSet,vertPnt]=getFeaturePnt(pntSet);
% 坐标区域修饰
hold on
ax=gca;
ax.DataAspectRatio=[1,1,1];
% 绘制原始数据曲线
plot(pntSet(:,1),pntSet(:,2),'Color',[0 0.4470 0.7410],'LineWidth',2,'Marker','*');
% 绘制新数据曲线
plot(nPntSet(:,1),nPntSet(:,2),'Color',[0.6350 0.0780 0.1840 .7],'LineWidth',2,'Marker','s');
legend('original-curve','feature-curve')

3.使用并修饰绘图(二维)

就把辅助线也画上并各种加属性呗,需要注意的是,垂足并不一定在相邻两点的连线上,有时候是在其延长线上,但因为怕麻烦这里延长线就没有画:

% 随机构造数据
X=linspace(0,25,10)';
Y=randi([0,10],[10,1]);
pntSet=[X,Y];
% 获取特征点
[nPntSet,vertPnt]=getFeaturePnt(pntSet);
% 坐标区域修饰
hold on
ax=gca;
ax.YLim=[0,10];
ax.DataAspectRatio=[1,1,1];
ax.Color=[1,1,1];
ax.XColor=[1,1,1].*.3;
ax.YColor=[1,1,1].*.3;
ax.LineWidth=1.5;
ax.FontName='cambria';
% 绘制原始数据曲线
l1=plot(pntSet(:,1),pntSet(:,2),'Color',[0 0.4470 0.7410],'LineWidth',2,'Marker','*');
% 绘制辅助线及垂线
innerPntSet=pntSet(2:end-1,:);
l2=plot([innerPntSet(:,1),vertPnt(:,1)]',[innerPntSet(:,2),vertPnt(:,2)]','Color',[.3,.3,.3],'LineWidth',1.2,'LineStyle','-.');
plot([pntSet(3:end,1),pntSet(1:end-2,1)]',[pntSet(3:end,2),pntSet(1:end-2,2)]','Color',[.3,.3,.3],'LineWidth',1.2,'LineStyle','-.')
% 绘制新数据曲线
l3=plot(nPntSet(:,1),nPntSet(:,2),'Color',[0.6350 0.0780 0.1840 .7],'LineWidth',2,'Marker','s');
% 增添图例
legend([l1,l2(1),l3],{'original-curve','auxiliary-line','feature-curve'});

4.三维数据

也是几乎完全相同的使用方式,不过绘图用的plot3:

% 随机构造数据
X=linspace(0,25,10)';
Y=randi([0,10],[10,1]);
Z=randi([0,10],[10,1]);
pntSet=[X,Y,Z];
% 获取特征点
[nPntSet,vertPnt]=getFeaturePnt(pntSet);
% 坐标区域修饰
hold on
grid on
ax=gca;
ax.YLim=[0,10];
ax.ZLim=[0,10];
ax.DataAspectRatio=[1,1,1];
ax.Color=[1,1,1];
ax.XColor=[1,1,1].*.3;
ax.YColor=[1,1,1].*.3;
ax.ZColor=[1,1,1].*.3;
ax.LineWidth=1.5;
ax.FontName='cambria';
% 绘制原始数据曲线
l1=plot3(pntSet(:,1),pntSet(:,2),pntSet(:,3),'Color',[0 0.4470 0.7410],'LineWidth',2,'Marker','*');
% 绘制辅助线
innerPntSet=pntSet(2:end-1,:);
l2=plot3([innerPntSet(:,1),vertPnt(:,1)]',[innerPntSet(:,2),vertPnt(:,2)]',...
    [innerPntSet(:,3),vertPnt(:,3)]','Color',[.3,.3,.3],'LineWidth',1.2,'LineStyle','-.');
plot3([pntSet(3:end,1),pntSet(1:end-2,1)]',[pntSet(3:end,2),pntSet(1:end-2,2)]',...
    [pntSet(3:end,3),pntSet(1:end-2,3)]','Color',[.3,.3,.3],'LineWidth',1.2,'LineStyle','-.')
% 绘制新数据曲线
l3=plot3(nPntSet(:,1),nPntSet(:,2),nPntSet(:,3),'Color',[0.6350 0.0780 0.1840 .7],'LineWidth',2,'Marker','s');
% 增添图例
legend([l1,l2(1),l3],{'original-curve','auxiliary-line','feature-curve'});
view(3)

以上就是Matlab利用垂距法实现提取离散坐标数据特征点的详细内容,更多关于Matlab垂距法的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Matlab利用垂距法实现提取离散坐标数据特征点

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Matlab怎么利用垂距法实现提取离散坐标数据特征点

这篇文章主要介绍了Matlab怎么利用垂距法实现提取离散坐标数据特征点的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Matlab怎么利用垂距法实现提取离散坐标数据特征点文章都会有所收获,下面我们一起来看看吧。垂
2023-06-29

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录