我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++实现对象池的具体方法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++实现对象池的具体方法

前言

需求无限,但资源有限的情况下,就需要对资源进行专门的管理。不断的申请和释放内存是不合理的,会造成内存的波动,以及内存不受限的增长。比如,实现了一个消息队列,当发消息的速度快于处理消息的速度时,如果不对资源进行控制,就会导致内存不断的增长。除非有专门的内存管理机制,或明确的编译器优化内存复用,否则建立一个资源管理模块是很有必要的。对象池就是一个对限定数量资源复用管理的模块。

一、什么是对象池

复用对象,消除频繁的对象创建销毁带来的性能消耗,以及避免内存增长的不可控。比如,线程池、连接池都是为了实现复用对象。
举个例子:假设在生产者消费者模型中,生产者生产时创建对象,消费者消费后销毁对象。直接简单的使用new和delete,就会让对象频繁创建和销毁导致额外性能消耗,而且生产者速度大于消费者速度时,就会让对象数量创建大于销毁导致内存不受控制增长。如果使用对象池,就可以让生产和消费复用固定数量的对象,很好的避免了频繁创建销毁对象以及内存增长不受控制的情况。

二、如何实现

1.确定接口

(1)、确定动态关系
通过序列图可以确定对象需要的接口,我们以socket服务为场景绘制序列图,如下

在这里插入图片描述

(2)、确定静态关系
根据上面的序列图确定的接口绘制成类图,如下:

在这里插入图片描述

2.转成代码

由于模块规模小,接口也不多,所以就不展示进一步细化设计了。因为本文讲述的是C++实现对象池,所以将上述设计转化为C++接口定义。如下:

    /// <summary>
	/// 对象池
	/// </summary>
	class ObjectPool
	{
	public:		
		/// <summary>
		/// 构造方法
		/// </summary>
		/// <param name="bufferArray">对象池的缓冲区,由外部指定,可以理解为一个数组。数组大小需满足bufferSize>=elementSize*arraySize</param>
		/// <param name="elementSize">数组元素大小</param>
		/// <param name="arraySize">数组长度或元素个数</param>
		ObjectPool(void* bufferArray, int elementSize, int arraySize );		
		/// <summary>
		/// 申请对象
		/// 如果池里对象不足,则会等待,直到有对象才返回。
		/// </summary>
		/// <returns>返回申请的对象指针</returns>
		void* Applicate();
		/// <summary>
		/// 申请对象
		/// </summary>
		/// <param name="timeout">超时时间,超时后返回null</param>
		/// <returns>返回申请的对象指针</returns>
		void* Applicate(int timeout);	
		/// <summary>
		/// 归还对象
		/// </summary>
		/// <param name="element">需归还的对象</param>
		void ReturnBack(void* element);	
	};

三、完整代码

根据上述的初步设计,再进行细化,以及实现,最终得出如下代码实现。
ObjectPool.h

#ifndef OBJECTPOOL_H
#define OBJECTPOOL_H

#include<unordered_map>
#include<vector>
#include<mutex>
#include<condition_variable>
namespace AC {
	/// <summary>
	/// 对象池
	/// </summary>
	class ObjectPool
	{
	public:		
		/// <summary>
		/// 构造方法
		/// </summary>
		/// <param name="bufferArray">对象池的缓冲区,由外部指定,可以理解为一个数组。数组大小需满足bufferSize>=elementSize*arraySize</param>
		/// <param name="elementSize">数组元素大小</param>
		/// <param name="arraySize">数组长度或元素个数</param>
		ObjectPool(void* bufferArray, int elementSize, int arraySize );
		/// <summary>
		/// 析构方法
		/// </summary>
		~ObjectPool();
		/// <summary>
		/// 申请对象
		/// 如果池里对象不足,则会等待,直到有对象才返回。
		/// </summary>
		/// <returns>返回申请的对象指针</returns>
		void* Applicate();
		/// <summary>
		/// 申请对象
		/// </summary>
		/// <param name="timeout">超时时间,超时后返回null</param>
		/// <returns>返回申请的对象指针</returns>
		void* Applicate(int timeout);	
		/// <summary>
		/// 归还对象
		/// </summary>
		/// <param name="element">需归还的对象</param>
		void ReturnBack(void* element);	
		/// <summary>
		/// 获取对象池的缓冲区,即构造方法中的bufferArray
		/// </summary>
		/// <returns>缓冲区的指针</returns>
		void* GetPoolBuffer();
		/// <summary>
		/// 获取对象的大小,即构造方法中的elementSize
		/// </summary>
		/// <returns>对象的大小</returns>
		int GetObjectSize();
		/// <summary>
		/// 获取总的对象数量,即构造方法中的arraySize
		/// </summary>
		/// <returns>总的对象数量</returns>
		int GetObjectCount();
	private:
		void*_buffer = NULL;
		int _elementSize;
		int _arraySize;
		std::vector<void*> _unusedUnits;
		std::unordered_map<void*, int> _usedUnits;
		std::mutex _mutex;
		std::condition_variable _cond;
	};

	/// <summary>
	/// 泛型对象池
	/// </summary>
	/// <typeparam name="T">对象类型</typeparam>
	template<typename T>
	class ObjectPoolGeneric:private ObjectPool
	{
	public:
		/// <summary>
		/// 构造方法
		/// </summary>
		/// <param name="array">对象数组</param>
		/// <param name="size">数组大小</param>
		/// <returns></returns>
		ObjectPoolGeneric(T*array,int size) :ObjectPool(array, sizeof(T), size)
		{
		}
		/// <summary>
		/// 析构方法
		/// </summary>
		~ObjectPoolGeneric() {}
		/// <summary>
		/// 申请对象
		/// 如果池里对象不足,则会等待,直到有对象才返回。
		/// </summary>
		/// <returns>返回申请的对象指针</returns>
		T* Applicate() {
			return (T*)ObjectPool::Applicate();
		}
		/// <summary>
		/// 申请对象
		/// </summary>
		/// <param name="timeout">超时时间,超时后返回null</param>
		/// <returns>返回申请的对象指针</returns>
		T* Applicate(int timeout) {
			return (T*)ObjectPool::Applicate(timeout);
		}
		/// <summary>
		/// 归还对象
		/// </summary>
		/// <param name="element">需归还的对象</param>
		void ReturnBack(T* element)
		{
			ObjectPool::ReturnBack(element);
		}
		/// <summary>
		/// 获取对象池的缓冲区,即构造方法中的bufferArray
		/// </summary>
		/// <returns>缓冲区的指针</returns>
		T* GetPoolBuffer() {
			return (T*)ObjectPool::GetPoolBuffer();
		}
	};
}
#endif 

ObjectPool.cpp

#include "ObjectPool.h"
#include <chrono> 
namespace AC {
	ObjectPool::ObjectPool(void* bufferArray, int elementSize, int arraySize)
	{
		if (elementSize < 1 || arraySize < 1)
			return;
		_buffer = bufferArray;
		_elementSize = elementSize;
		_arraySize = arraySize;
		char* firstAdress = (char*)bufferArray;
		//记录未使用的索引
		for (int i = 0; i < arraySize; i++)
		{
			_unusedUnits.push_back(&(firstAdress[i * elementSize]));
		}
	}
	ObjectPool::~ObjectPool()
	{
	}
	void* ObjectPool::Applicate()
	{
		return Applicate(-1);
	}
	void* ObjectPool::Applicate(int timeout) {
		void* resource = NULL;
		std::unique_lock<std::mutex> l(_mutex);
		while (_unusedUnits.size() < 1)
		{
			if (timeout == -1)
			{
				_cond.wait(l);
			}
			else if (_cond.wait_for(l, std::chrono::microseconds(timeout)) == std::cv_status::timeout)
			{
				return nullptr;
			}
		}
		resource = _unusedUnits.back();
		_usedUnits[resource] = 1;
		_unusedUnits.pop_back();
		return resource;
	}
	void ObjectPool::ReturnBack(void* element) {
		_mutex.lock();
		auto iter = _usedUnits.find(element);
		if (iter != _usedUnits.end())
		{
			_unusedUnits.push_back(element);
			_usedUnits.erase(iter);
			_cond.notify_one();
		}
		_mutex.unlock();
	}
	void* ObjectPool::GetPoolBuffer()
	{
		return _buffer;
	}
	int ObjectPool::GetObjectSize()
	{
		return _elementSize;
	}
	int ObjectPool::GetObjectCount()
	{
		return _arraySize;
	}
}

四、使用示例

1、对象复用,示例:

#include "ObjectPool.h"
class A {
public:
	A() {
		printf("%p\n", this);
	}
};
int main(int argc, char** argv) {
	//初始化对象池,2个对象
	AC::ObjectPool objectPool(new char[sizeof(A) * 2], sizeof(A), 2);
	A* a, * b, * c;
	//申请对象,使用定位new初始化对象
	a = new (objectPool.Applicate())A;
	b = new (objectPool.Applicate())A;
	//归还对象
	a->~A();//返初始化对象
	objectPool.ReturnBack(a);
	c = new (objectPool.Applicate())A;
	b->~A();
	c->~A();
	//使用结束,删除缓存
	delete	objectPool.GetPoolBuffer();
	return 0;
}

输出:
016502E9
016502E8
016502E9

2、简易的线程池,示例:

#include <thread>
#include <chrono>
#include <mutex>
#include <condition_variable>
#include "ObjectPool.h"
class ThreadInfo {
public:
	std::thread* pThread;
	std::mutex _mutext;
	std::condition_variable _cv;
	std::function<void()> _threadPoc;
};
//线程信息数组,数组长度即线程池的线程数
ThreadInfo _threadArray[3];
//对象池,使用线程信息数组初始化
AC::ObjectPoolGeneric<ThreadInfo>_threadPool(_threadArray, 3);
bool _exitThreadPool = false;
//在线程池中运行方法
void RunInThreadPool(std::function<void()> f) {
	//申请线程
	auto threadInfo = _threadPool.Applicate();
	threadInfo->_threadPoc = f; 
	if (threadInfo->pThread)
		//复用线程
	{
		threadInfo->_cv.notify_one();
	}
	else
		//创建线程
	{
		threadInfo->pThread = new std::thread([=]() {
			while (!_exitThreadPool)
			{
				printf("thread %d run\n", threadInfo->pThread->get_id());
				if (threadInfo->_threadPoc)
				{	//执行线程操作
					threadInfo->_threadPoc();
				}
				printf("thread %d stop\n", threadInfo->pThread->get_id());
				//归还线程
				_threadPool.ReturnBack(threadInfo);
				std::unique_lock<std::mutex>lck(threadInfo->_mutext);
				threadInfo->_cv.wait(lck);
			}
		});
	}
}
int main(int argc, char** argv) {
	while(true)
	{   //在线程池中运行方法
		RunInThreadPool([]() {		
			std::this_thread::sleep_for(std::chrono::milliseconds(1000));	
		});
	}
    return 0;
}

输出:
thread 69664 run
thread 57540 run
thread 56876 run
thread 69664 stop
thread 69664 run
thread 57540 stop
thread 56876 stop
thread 57540 run
thread 56876 run
thread 69664 stop
thread 69664 run
thread 56876 stop
thread 57540 stop
thread 56876 run
thread 57540 run
thread 69664 stop

总结

以上就是今天要讲的内容,本文介绍了对象池的设计与实现以及使用,其使用场景其实不算多,因为很多需要对象复用的场景通常以及有底层实现了,比如线程池数据库的连接池等,所以本文讲的内容只能适用于少数的场景,比如waveOut播放音频时是可以使用对象池实现 的。但总得来说,对象池还是有用的,所以将其写成博客用于记录曾经用过的技术。

到此这篇关于C++ 实现对象池的具体方法的文章就介绍到这了,更多相关C++ 对象池内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++实现对象池的具体方法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++如何实现对象池

这篇“C++如何实现对象池”文章,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要参考一下,对于“C++如何实现对象池”,小编整理了以下知识点,请大家跟着小编的步伐一步一步的慢慢理解,接下来就让我们进入主题吧。前言需求
2023-06-26

Java对象池技术的原理及其实现方法

这篇文章主要讲解了“Java对象池技术的原理及其实现方法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Java对象池技术的原理及其实现方法”吧!摘 要 :本文在分析对象池技术基本原理的基础上
2023-06-03

C++实现WPF动画的具体操作方法

本篇文章为大家展示了C++实现WPF动画的具体操作方法,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。C++编程语言的应方式非常广泛,可以帮助我们轻松的实现许多功能需求。很多人都习惯使用Blend来帮
2023-06-17

C++内存池的实现方法

这篇文章主要讲解了“C++内存池的实现方法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++内存池的实现方法”吧!目录一、内存池基础知识1、什么是内存池1.1 池化技术1.2 内存池2、内
2023-06-20

C++ 函数模板的语法及具体实现方法?

c++++函数模板允许使用泛型类型参数定义函数,使函数可以处理不同类型的数据。具体实现如下:语法:template 返回类型 函数名(输入参数列表){ // 函数体 }泛型类型参数 t:表示函数可以处理的类型。实战案例:例如,可使用sum
C++ 函数模板的语法及具体实现方法?
2024-04-15

GolangMutex实现互斥的具体方法

Mutex是Golang常见的并发原语,在开发过程中经常使用到,本文主要介绍了GolangMutex实现互斥的具体方法,具有一定的参考价值,感兴趣的可以了解一下
2023-05-17

java实体对象转map的方法是什么

Java实体对象转Map的方法有以下几种:1. 使用Java反射机制:通过使用Java的反射机制,可以获取实体对象的所有字段和对应的值,然后将它们存储在一个Map中。```javapublic static Map objectToMap
2023-09-16

Mybatis实体类对象入参查询的方法

本篇内容介绍了“Mybatis实体类对象入参查询的方法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!Mybatis实体类对象入参查询测试实体
2023-07-02

golang对象池的实现原理是什么

Golang对象池是一种用于重复利用对象的机制,以避免频繁的创建和销毁对象的开销。它通过预先创建一定数量的对象,并在需要时从池中获取对象,使用完毕后再将对象放回池中,以供后续的使用。Golang对象池的实现原理主要包括以下几个步骤:初始化
2023-10-27

c++线程池实现的方法是什么

C++线程池的实现方法可以使用C++中的多线程库,如std::thread和std::mutex等来实现。以下是一个简单的C++线程池的实现方法:创建一个任务队列,用于存储需要执行的任务。创建一个固定数量的线程池,每个线程都在循环中从任务
2023-10-26

Rust实现面向对象的方法

这篇文章主要介绍了Rust实现面向对象的方法,Rust 并不是面向对象的语言,但是面向对象的功能都可以通过自身的特点来实现,本文通过示例代码给大家详细讲解,需要的朋友可以参考下
2022-11-13

如何理解Python绑定C++程序的具体实现方法

本篇文章给大家分享的是有关如何理解Python绑定C++程序的具体实现方法,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。Python编程语言的应用范围比较广泛,应用方式灵活,可
2023-06-17

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录