我的编程空间,编程开发者的网络收藏夹
学习永远不晚

我对大数据的认知居然是错的?

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

我对大数据的认知居然是错的?

  欢迎各位阅读本篇文章,本文主要讲了大数据的正确认知。自从美团王兴提出移动互联网下半场的概念后,大家在谈论每一个行业时,都要提到下半场,包括大数据行业。大数据的概念在这几年,火爆程度不亚于AI、VR等概念。但是,作为一个大数据创业者,在谈大数据的下半场之前,现在互联网界对于大数据这个概念有太多误区。你所知道的大数据的概念,也许都是错误的。我发现身边很多IT人对于这些热门的新技术、新趋势往往趋之若鹜却又很难说的透彻,如果你问他大数据和你有什么关系?估计很少能说出一二三来。究其原因,一是因为大家对新技术有着相同的原始渴求,至少知其然在聊天时不会显得很“土鳖”;二是在工作和生活环境中真正能参与实践大数据的案例实在太少了,所以大家没有必要花时间去知其所以然。

我对大数据的认知居然是错的?_大数据_数据挖掘_虚拟化_编程学习网教育

  大数据并不是在大,而是有用

  首先,大数据并不在于其大,而在于质量,用通俗的话说就是有用。

  大数据是一个比较泛的概念,大数据其实不是强调数据有多么大,而是有用。有用的数据才能称得上是大数据,有用就包括了规模、质量等各种综合性属性。

  首先,我认为大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

  所有的数据都必须深度地与业务揉合。换句话说,创业者凭空想象的大数据模式一定都是虚假的。没有做过这个具体业务的人去谈合作,说如何帮到别人,这都是忽悠。

  这个行业里有太多不可描述的事情,靠这个忽悠吃饭的人太多了。大数据领域,精准营销是一个被提及到最多的概念,没有之一,理论是大数据可以支持精准营销。大家都知道大数据需要规模,所有外行人看到的就是,你有这么多数据,所以你这个就是精准营销。但是忽视了一点就是,真正到精准营销前还有一个在中间隔着的,不是规模而是质量,而最终落地在效果。

  这里面大家很容易忽视一点,就是大数据要做到支持精准营销,这里面对大数据是有约定的,数据的质量和规模同比都能达到的情况下,才可以实现。

  规模在大数据这一行目前看做到不难,难在质量,而且质量是难以逾越的一道天堑。如果说DataEye从头再来,2年内只做到现如今的覆盖我觉的依旧没什么难度。但是,这种覆盖所获得的数据,能不能支撑所谓的大数据精准营销,这是关键。没有质量谈数据的商业化都是扯淡。

DataEye

  以游戏行业为例,在游戏里做大数据营销,或者放大一点在移动互联网做大数据的精准营销,其实收集的不外乎是人的一些行为数据。但真正能支撑你到后面变现的行为才是有效的,但这点并不是每个行为都能支持的。

  所以在大数据行业里,无效数据和数据质量的监测是很重要的,这个我觉得是下半场的核心。它会影响每一家数据公司数据变现的效率,变现效率将会是下半场的赛点。

  在接下来,如何高效地获得有效数据这对创业者的门槛将变得非常高。很多数据服务,比如说统计产品,不是拿到的数据都有效,我认为很多统计产品拿到的数据是无效的,甚至是没有任何商业化的价值。

  创业者要关注自己最终数据商业化的落点在哪,如果是精准营销,什么样的数据是有效的呢?在这其中,高质量客户的行为数据对精准定位肯定是有效的。比如要推销一个潮品,你需要的用户不仅是个消费能力强的,而且是很潮的人,那么他就是一个高质量的数据。换句话说,如果产品都不能覆盖这些人(你商业落点的客户全体),覆盖的都是一些六七八九线城市的用户,这时候创业者跟投资者说看见没有,我有一两亿用户移动端行为数据,其实商业化根本无从谈起。所以我说的商业落点很重要,因为只有知道落点在哪你才知道你的数据质量该如何提升,究竟缺什么,该设计什么样的服务产品。

  所以大数据的下半场,争夺的就是商业化效益,其中关键是数据质量的竞争。但想要高质量的数据或者高质量的客户,你就要提供高质量的服务产品,才能完成高效高质的数据积累。高质量的数据依赖高质量的业务,高质量的业务依赖于高质量的产品,三者相辅相成。

  比如现在游戏行业买量、导量成本高了,于是需要更多的服务。开始创业的时候我们做了个产品叫广告监测,这个产品很简单,到16年之后就没怎么推了。因为我们觉得这个产品门槛很低,而且客户自己都能解决,很多客户已经自己解决了。有中小客户解决不了的,他可能用第三方。那在这一点上,我们必须提供高质量的业务或者产品。我们今年在产品布局就整个提升一个档次,提升整体数据质量,提升服务水平。

  你或许并不敏感,当你在不同的网站上注册了个人信息后,可能这些信息已经被扩散出去了,当你莫名其妙的接到各种邮件,电话,短信的滋扰时,你不会想到自己的电话号码,邮箱,生日,购买记录,收入水平,家庭住址,亲朋好友等私人信息早就被各种商业机构非法存储或贱卖给其它任何有需要的企业或个人了。

  更可怕的是,这些信息你永远无法删除,它们永远存在于互联网的某些你不知道的角落。除非你更换掉自己的所有信息,但是这代价太大了。

  用户隐私问题一直是大数据应用难以绕开的一个问题,如被央视曝光过的分众无线、罗维邓白氏以及网易邮箱都涉及侵犯用户隐私。目前,中国并没有专门的法律法规来界定用户隐私,处理相关问题时多采用其他相关法规条例来解释。但随着民众隐私意识的日益增强,合法合规地获取数据、分析数据和应用数据,是进行大数据分析时必须遵循的原则。

  数据是客观的,也是最不客观的

  在理论上来说,数据是最客观的,因为拿到的这些数据,都是通过设备等各种渠道采集的。但同时这也是最不客观的,因为人工可以干预并篡改。

  在中国,纯粹的规模和量级很容易达到,有些人客观达不到,就通过主观的各种手段,哪怕是造假也很容易达到。所以说,数据规模这不是一个特别好衡量的东西,听上去太虚了。到现在为止,还会有些创业者喜欢说,他们覆盖的设备数量,然从十亿到几十亿台,甚至有的人说自己都快上百亿了,我在知乎里提过一个问题:请问中国的运营商一年入网多少台设备啊?大数据创业者太多,设备有些不够用了。

  从腾讯离职,到现在我做大数据这么多年,随着项目的不断发展,对数据的感觉越来越深刻,数据这个东西真的很有意思,如果说它客观,它可能是这个世界上最客观的一个存在。但如果说它虚吧,它也最容易被修改。现在各行各业开口闭口都是数据,但是大家有没有想过,这个数据随时可以被修改。

  这点不方便太展开说,具体原因你懂的。

数据是客观的,也是最不客观的

  这个阶段大数据核心不是技术,而是商业化

  大数据创业到现在,决定最终发展的,其实不是大数据的技术,而是大数据的商业化。

  上半场结束了,下半场竞争的是什么,我们确实一直在思考。想来想去恐怕就是商业化了。对数据源来说,不是比谁会忽悠,比的是谁更能赚钱,谁的变现效率更快。

  不懂商业的创业者,一定是会垫底的,把大数据的坑填平的。中国不缺数据技术型人才,缺的是数据商业化人才。怎么样结合数据把它商业化,把这生意做好,这个是中国最缺的。

  不仅是大数据,可能各个行业都是这样,现在缺乏真正的商业化。前面竞争已经基本结束,但真正走向商业是一道大坎。15年我在硅谷待了一段时间,见了很多以前在腾讯的兄弟,之前腾讯研究院的兄弟在google研究算法有不少,他研究的课题我看了,确实先进,但要说在技术上高多少也不见得,但是大家所展现的商业思维与探索,跟国内确实有比较大的差距。

  现在在国外,有专门帮助客户做大数据商业化的公司。比如我了解的一个海外团队就是在帮全球各处运营商做数据商业化的。他们在海外做过的商业化的案子,包括门店、运营商、基站的选址,高速公路边上那种大的立柱广告的布设等等。

  大数据的商业,最后一定是很简单直接的商业模式,越简单直接的商业模式越是一个好商业模式。纸面上的模式、数据等,那没任何意义。实践很重要,我看过太多大数据案例了甚至有些我可以告诉大家都是所谓的专家臆想出来的,相对于纸面上的案例我更喜欢踏实实践的失败例子。

  整个大数据的上半场,大家拼概念、拿融资、收数据源,该拿的都拿了,数据源之争到16年基本上就收官了,格局已经形成。接下去的下半场就真的很残酷了,这拼的真的就是鱼死网破了。那下半场大家拼的是什么?拼的就是边际效应。既然圈了这么多人进来,那就得把这个闭环圆上,不然怎么收场?所以大数据下半场,就是拼变现和效率。创业者能等,投资人等不了。

  大数据行业还有很长的路要走。现在很多时候都是看不清的,硅谷的《奇点来临》说,任何一个新兴行业最终都会有一个曲线。一个新兴的行业的发展一定都是波浪式发展的,一开始是高速发展,发展完之后进入调整期,然后再冲刺。大数据行业也是如此。当它经历低谷之后它会再次成长起来,那这整个行业可能就慢慢开始成熟了。而现在,我们处在离成熟阶段还有比较远的距离。

  小结:采集个人数据应该明确分类,除了国家立法明确要求接受监控的数据外,其它类型数据都由用户自己决定是否被采集。数据的使用将只能由用户进行授权,数据中心可帮助监控个人数据的整个生命周期。相信最后大家阅读完毕本篇文章,肯定学到了不少知识吧?其实大家私下还得多多自学,当然如果大家还想了解更多方面的详细内容的话呢,不妨关注编程学习网教育平台,在这个学习知识的天堂中,您肯定会有意想不到的收获的!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

我对大数据的认知居然是错的?

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

我对大数据的认知居然是错的?

欢迎各位阅读本篇文章,本文主要讲了大数据的正确认知。自从美团王兴提出移动互联网下半场的概念后,大家在谈论每一个行业时,都要提到下半场,包括大数据行业。
我对大数据的认知居然是错的?
2024-04-23

你认为大数据的特点是什么

大数据的特点包括以下几个方面:1. 三个V:大数据的特点可以用三个V来概括,即数据量大(Volume)、数据种类多样(Variety)和数据速度快(Velocity)。大数据的规模庞大,包括了结构化数据、半结构化数据和非结构化数据,而且数据
2023-10-11

Facebook是如何对大数据进行分析的

这篇文章主要介绍“Facebook是如何对大数据进行分析的”,在日常操作中,相信很多人在Facebook是如何对大数据进行分析的问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Facebook是如何对大数据进行
2023-06-10

大数据流处理中Flume、Kafka和NiFi的对比是怎样的

今天就跟大家聊聊有关大数据流处理中Flume、Kafka和NiFi的对比是怎样的,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。我们将简要介绍三种Apache处理工具:Flume、Ka
2023-06-02

我是否需要对存储在数据库中的刷新令牌进行哈希处理?

哈喽!今天心血来潮给大家带来了《我是否需要对存储在数据库中的刷新令牌进行哈希处理?》,想必大家应该对Golang都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习Golang,千万别错过这篇文章~希望能帮助到你!问题
我是否需要对存储在数据库中的刷新令牌进行哈希处理?
2024-04-05

编程热搜

  • Mysql分表查询海量数据和解决方案
    众所周知数据库的管理往往离不开各种的数据优化,而要想进行优化通常我们都是通过参数来完成优化的。那么到底这些参数有哪些呢?为此在本篇文章中编程学习网笔者就为大家简单介绍MySQL,以供大家参考参考,希望能帮助到大家。以上就是关于大数据的知识点了。喜欢的可以分享给你的朋友,也可以点赞噢~更多内容,就在编程学习网!
    Mysql分表查询海量数据和解决方案
  • 大数据的妙用及17年趋势
    2017年,支持大量结构化和非结构化数据的系统将继续增长。市场需要数据平台来帮助数据管理人员管理和保护大数据,同时允许最终用户进行数据分析。这些系统将逐步成熟,在企业内部的IT系统中更好地运行。所以,我们更要了解大数据!互联网普及使得网民的行为更加多元化,通过互联网产生的数据发展更加迅猛,更具代表性。互联网世界中的商品信息、社交媒体中的图片、文本信息以及视频网站的视频信息,互联网世界中的人与人交互信息、位置信息等,都已经成为大数据的最重要也是增长最快的来源。大家都了解到了吗!更多内容就在编程学习网哟
    大数据的妙用及17年趋势
  • 5G大数据时代空降来袭
    欢迎各位阅读本篇文章,本文主要讲了5G大数据时代。如今 5G 概念已不再陌生,按照行业认同的说法:2017年至2018年 5G 将在国内开始有序测试,2019年进行预商用。工信部之前已表示,中国将在2020年启动 5G 商用。编程学习网教育平台提醒各位:本篇文章纯干货~因此大家一定要认真阅读本篇文章哦!
    5G大数据时代空降来袭
  • es详解-原理-从图解构筑对es原理的初步认知
    在学习ElasticSearch原理时,我推荐你先通过官方博客中的一篇图解文章(虽然是基于2.x版本)来构筑对ES的初步认知(这种认识是体系上的快速认知)。ES详解 - 原理:从图解构筑对ES原理的初步认知前言图解ElasticSearch图解LuceneSegmentInverted IndexStored Fiel
    es详解-原理-从图解构筑对es原理的初步认知
  • elasticsearch-wrapperquery
    在工作中遇到ElasticSearch版本升级时出现Java High Level接口变更导致的兼容性问题: 之前使用的是2.4.x,考虑性能和功能的增强,需要更换为6.4.x; 2.4.x中我们使用DSL语句直接查询(数据的不确定性和方便动态建立查询规则等因素),而新的ES Java 高阶API中去掉了相关接口的支持
    elasticsearch-wrapperquery
  • 学习大数据营销思维(下)
    编程学习网: 其实,通过上面的介绍,我们知道苹果通过各类产品与服务销售相互促进以理及薄利多销的方式来盈利第二种战略联盟类型是合作方的共同赢利。苹果公司打造了一个参与方共同受益的业务系统。
    学习大数据营销思维(下)
  • 纯干货:HLS 协议详解及优化技术全面解析
    编程学习网:HLS (HTTP Live Streaming), 是由 Apple 公司实现的基于 HTTP 的媒体流传输协议。他跟 DASH 协议的原理非常类似,通过将整条流切割成一个小的可以通过 HTTP 下载的媒体文件,然后提供一个配套的媒体列表文件给客户端,让客户端顺序地拉取这些媒体文件播放, 来实现看上去是在播放一条流的效果。HLS 目前广泛地应用于点播和直播领域。
    纯干货:HLS 协议详解及优化技术全面解析
  • 关于Python 代码全面分析
    欢迎各位阅读本篇,Python(KK 英语发音:/ˈpaɪθən/)是一种面向对象、直译式计算机程序设计语言。本篇文章讲述了关于Python 代码全面分析。
    关于Python 代码全面分析
  • es详解-原理-es原理之索引文档流程详解
    ElasticSearch中最重要原理是文档的索引和文档的读取,本文带你理解ES文档的索引过程。ES详解 - 原理:ES原理之索引文档流程详解文档索引步骤顺序单个文档多个文档文档索引过程详解整体的索引流程分步骤看数据持久化过程深入ElasticSearch索引文档的实现机制写操作的关键点Lucene的写Elastics
    es详解-原理-es原理之索引文档流程详解
  • 五大“网管”必备的网络数据分析工具
    是不是在为如何分析统计网络数据和流量烦恼呢?想不想监控、运维、排障轻松一些?下面给大家提供一些免费网络分析工具,以帮助大家更好的掌控自己的网络!编程学习网教育
    五大“网管”必备的网络数据分析工具

目录