我的编程空间,编程开发者的网络收藏夹
学习永远不晚

如何用Python绘制可视化动态图表

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

如何用Python绘制可视化动态图表

这篇文章主要介绍“如何用Python绘制可视化动态图表”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“如何用Python绘制可视化动态图表”文章能帮助大家解决问题。

如何用Python绘制可视化动态图表

对数据科学家来说,讲故事是一个至关重要的技能。为了表达我们的思想并且说服别人,我们需要有效的沟通。而漂漂亮亮的可视化是完成这一任务的绝佳工具。

安装模块

如果你还没安装 Plotly,只需在你的终端运行以下命令即可完成安装:

pip install plotly

可视化动态图

在研究这个或那个指标的演变时,我们常涉及到时间数据。Plotly动画工具仅需一行代码就能让人观看数据随时间的变化情况,如下图所示:

如何用Python绘制可视化动态图表

代码如下:

import plotly.express as pxfrom vega_datasets import datadf = data.disasters()df = df[df.Year > 1990]fig = px.bar(df,             y="Entity",             x="Deaths",             animation_frame="Year",             orientation='h',             range_x=[0, df.Deaths.max()],             color="Entity")# improve aesthetics (size, grids etc.)fig.update_layout(width=1000,                  height=800,                  xaxis_showgrid=False,                  yaxis_showgrid=False,                  paper_bgcolor='rgba(0,0,0,0)',                  plot_bgcolor='rgba(0,0,0,0)',                  title_text='Evolution of Natural Disasters',                  showlegend=False)fig.update_xaxes(title_text='Number of Deaths')fig.update_yaxes(title_text='')fig.show()

只要你有一个时间变量来过滤,那么几乎任何图表都可以做成动画。下面是一个制作散点图动画的例子:

如何用Python绘制可视化动态图表

import plotly.express as pxdf = px.data.gapminder()fig = px.scatter(    df,    x="gdpPercap",    y="lifeExp",    animation_frame="year",    size="pop",    color="continent",    hover_name="country",    log_x=True,    size_max=55,    range_x=[100, 100000],    range_y=[25, 90],    #   color_continuous_scale=px.colors.sequential.Emrld)fig.update_layout(width=1000,                  height=800,                  xaxis_showgrid=False,                  yaxis_showgrid=False,                  paper_bgcolor='rgba(0,0,0,0)',                  plot_bgcolor='rgba(0,0,0,0)')

太阳图

太阳图(sunburst chart)是一种可视化group by语句的好方法。如果你想通过一个或多个类别变量来分解一个给定的量,那就用太阳图吧。

假设我们想根据性别和每天的时间分解平均小费数据,那么相较于表格,这种双重group by语句可以通过可视化来更有效地展示。

如何用Python绘制可视化动态图表

这个图表是交互式的,让你可以自己点击并探索各个类别。你只需要定义你的所有类别,并声明它们之间的层次结构(见以下代码中的parents参数)并分配对应的值即可,这在我们案例中即为group by语句的输出。

import plotly.graph_objects as goimport plotly.express as pximport numpy as npimport pandas as pddf = px.data.tips()fig = go.Figure(go.Sunburst(    labels=["Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch '],    parents=["", "", "Female", "Female", 'Male', 'Male'],    values=np.append(        df.groupby('sex').tip.mean().values,        df.groupby(['sex', 'time']).tip.mean().values),    marker=dict(colors=px.colors.sequential.Emrld)),                layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',                                 plot_bgcolor='rgba(0,0,0,0)'))fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),                  title_text='Tipping Habbits Per Gender, Time and Day')fig.show()

现在我们向这个层次结构再添加一层:

如何用Python绘制可视化动态图表

为此,我们再添加另一个涉及三个类别变量的group by语句的值。

import plotly.graph_objects as goimport plotly.express as pximport pandas as pdimport numpy as npdf = px.data.tips()fig = go.Figure(go.Sunburst(labels=[    "Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch ', 'Fri', 'Sat',    'Sun', 'Thu', 'Fri ', 'Thu ', 'Fri  ', 'Sat  ', 'Sun  ', 'Fri   ', 'Thu   '],                            parents=[                                "", "", "Female", "Female", 'Male', 'Male',                                'Dinner', 'Dinner', 'Dinner', 'Dinner',                                'Lunch', 'Lunch', 'Dinner ', 'Dinner ',                                'Dinner ', 'Lunch ', 'Lunch '                            ],                            values=np.append(                                np.append(                                    df.groupby('sex').tip.mean().values,                                    df.groupby(['sex',                                                'time']).tip.mean().values,                                ),                                df.groupby(['sex', 'time',                                            'day']).tip.mean().values),                            marker=dict(colors=px.colors.sequential.Emrld)),                layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',                                 plot_bgcolor='rgba(0,0,0,0)'))fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),                  title_text='Tipping Habbits Per Gender, Time and Day')fig.show()

指针图

指针图仅仅是为了好看。在报告 KPI 等成功指标并展示其与你的目标的距离时,可以使用这种图表。

如何用Python绘制可视化动态图表

import plotly.graph_objects as gofig = go.Figure(go.Indicator(    domain = {'x': [0, 1], 'y': [0, 1]},    value = 4.3,    mode = "gauge+number+delta",    title = {'text': "Success Metric"},    delta = {'reference': 3.9},    gauge = {'bar': {'color': "lightgreen"},        'axis': {'range': [None, 5]},             'steps' : [                 {'range': [0, 2.5], 'color': "lightgray"},                 {'range': [2.5, 4], 'color': "gray"}],          }))fig.show()

桑基图

另一种探索类别变量之间关系的方法是以下这种平行坐标图。你可以随时拖放、高亮和浏览值,非常适合演示时使用。

如何用Python绘制可视化动态图表

代码如下:

import plotly.express as pxfrom vega_datasets import dataimport pandas as pddf = data.movies()df = df.dropna()df['Genre_id'] = df.Major_Genre.factorize()[0]fig = px.parallel_categories(    df,    dimensions=['MPAA_Rating', 'Creative_Type', 'Major_Genre'],    color="Genre_id",    color_continuous_scale=px.colors.sequential.Emrld,)fig.show()

平行坐标图

平行坐标图是上面的图表的衍生版本。这里,每一根弦都代表单个观察。这是一种可用于识别离群值(远离其它数据的单条线)、聚类、趋势和冗余变量(比如如果两个变量在每个观察上的值都相近,那么它们将位于同一水平线上,表示存在冗余)的好用工具。

如何用Python绘制可视化动态图表

代码如下:

import plotly.express as pxfrom vega_datasets import dataimport pandas as pddf = data.movies()df = df.dropna()df['Genre_id'] = df.Major_Genre.factorize()[0]fig = px.parallel_coordinates(    df,    dimensions=[        'IMDB_Rating', 'IMDB_Votes', 'Production_Budget', 'Running_Time_min',        'US_Gross', 'Worldwide_Gross', 'US_DVD_Sales'    ],    color='IMDB_Rating',    color_continuous_scale=px.colors.sequential.Emrld)fig.show()

关于“如何用Python绘制可视化动态图表”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注编程网行业资讯频道,小编每天都会为大家更新不同的知识点。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

如何用Python绘制可视化动态图表

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何用Python绘制可视化动态图表

这篇文章主要介绍“如何用Python绘制可视化动态图表”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“如何用Python绘制可视化动态图表”文章能帮助大家解决问题。对数据科学家来说,讲故事是一个至关重
2023-06-30

如何用Python绘制动态可视化图表

本篇内容主要讲解“如何用Python绘制动态可视化图表”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“如何用Python绘制动态可视化图表”吧!安装模块如果你还没安装 Plotly,只需在你的终端
2023-06-30

怎么用Python绘制动态可视化图表

这篇“怎么用Python绘制动态可视化图表”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“怎么用Python绘制动态可视化图表
2023-06-29

Python如何利用D3Blocks绘制可动态交互的图表

本篇内容主要讲解“Python如何利用D3Blocks绘制可动态交互的图表”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python如何利用D3Blocks绘制可动态交互的图表”吧!热力图热力图
2023-07-05

 python如何用matplotlib可视化绘图

本篇文章为大家展示了 python如何用matplotlib可视化绘图,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。1、Matplotlib 简介Matplotlib 简介:Matplotlib 是
2023-06-26

Python利用D3Blocks绘制可动态交互的图表

今天小编给大家来介绍一款十分好用的可视化模块,D3Blocks,不仅可以用来绘制可动态交互的图表,并且导出的图表可以是HTML格式,方便在浏览器上面呈现,感兴趣的可以了解一下
2023-02-03

Python数据可视化实践之使用Matplotlib绘制图表

数据可视化是数据分析的重要环节,通过将数据转化为图形,可以更直观地展示数据特征和规律。Python中的Matplotlib库是一个强大的数据可视化工具,本文将带您了解Matplotlib的基本使用方法,以及如何绘制常见的图表
2023-05-18

如何使用python数据可视化Seaborn绘制山脊图

这篇文章主要介绍如何使用python数据可视化Seaborn绘制山脊图,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!1. 引言山脊图一般由垂直堆叠的折线图组成,这些折线图中的折线区域间彼此重叠,此外它们还共享相同的x
2023-06-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录