我的编程空间,编程开发者的网络收藏夹
学习永远不晚

详解Python进行数据相关性分析的三种方式

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

详解Python进行数据相关性分析的三种方式

相关性实现

统计和数据科学通常关注数据集的两个或多个变量(或特征)之间的关系。数据集中的每个数据点都是一个观察值,特征是这些观察值的属性或属性。

这里主要介绍下面3种相关性的计算方式:

  • Pearson’s r
  • Spearman’s rho
  • Kendall’s tau

NumPy 相关性计算

np.corrcoef() 返回 Pearson 相关系数矩阵。

import numpy as np
x = np.arange(10, 20)
x
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])

y = np.array([2, 1, 4, 5, 8, 12, 18, 25, 96, 48])
y
array([ 2,  1,  4,  5,  8, 12, 18, 25, 96, 48])

r = np.corrcoef(x, y)
r
array([[1.        , 0.75864029],
       [0.75864029, 1.        ]])

SciPy 相关性计算

import numpy as np
import scipy.stats
x = np.arange(10, 20)
y = np.array([2, 1, 4, 5, 8, 12, 18, 25, 96, 48])

scipy.stats.pearsonr(x, y)    # Pearson's r
(0.7586402890911869, 0.010964341301680832)

scipy.stats.spearmanr(x, y)   # Spearman's rho
SpearmanrResult(correlation=0.9757575757575757, pvalue=1.4675461874042197e-06)

scipy.stats.kendalltau(x, y)  # Kendall's tau
KendalltauResult(correlation=0.911111111111111, pvalue=2.9761904761904762e-05)

在检验假设时,您可以在统计方法中使用p 值。p 值是一项重要的衡量标准,需要深入了解概率和统计数据才能进行解释。

scipy.stats.pearsonr(x, y)[0]    # Pearson's r
0.7586402890911869
scipy.stats.spearmanr(x, y)[0]   # Spearman's rho
0.9757575757575757
scipy.stats.kendalltau(x, y)[0]  # Kendall's tau
0.911111111111111

Pandas 相关性计算

相对于来说计算比较简单。

import pandas as pd
x = pd.Series(range(10, 20))
y = pd.Series([2, 1, 4, 5, 8, 12, 18, 25, 96, 48])

x.corr(y)                     # Pearson's r
0.7586402890911867
y.corr(x)
0.7586402890911869
x.corr(y, method='spearman')  # Spearman's rho
0.9757575757575757
x.corr(y, method='kendall')   # Kendall's tau
0.911111111111111

线性相关实现

线性相关性测量变量或数据集特征之间的数学关系与线性函数的接近程度。如果两个特征之间的关系更接近某个线性函数,那么它们的线性相关性更强,相关系数的绝对值也更高。

线性回归:SciPy 实现

线性回归是寻找尽可能接近特征之间实际关系的线性函数的过程。换句话说,您确定最能描述特征之间关联的线性函数,这种线性函数也称为回归线。

import pandas as pd
x = pd.Series(range(10, 20))
y = pd.Series([2, 1, 4, 5, 8, 12, 18, 25, 96, 48])

使用scipy.stats.linregress()对两个长度相同的数组执行线性回归。

result = scipy.stats.linregress(x, y)
scipy.stats.linregress(xy)
LinregressResult(slope=7.4363636363636365, intercept=-85.92727272727274, rvalue=0.7586402890911869, pvalue=0.010964341301680825, stderr=2.257878767543913)

result.slope # 回归线的斜率
7.4363636363636365

result.intercept # 回归线的截距
-85.92727272727274

result.rvalue # 相关系数
0.7586402890911869

result.pvalue #  p值
0.010964341301680825

result.stderr # 估计梯度的标准误差
2.257878767543913

未来更多内容参考机器学习专栏中的线性回归内容。

等级相关

比较与两个变量或数据集特征相关的数据的排名或排序。如果排序相似则相关性强、正且高。但是如果顺序接近反转,则相关性为强、负和低。换句话说等级相关性仅与值的顺序有关,而不与数据集中的特定值有关。

图1和图2显示了较大的 x 值始终对应于较大的 y 值的观察结果,这是完美的正等级相关。图3说明了相反的情况即完美的负等级相关。

排名:SciPy 实现

使用 scipy.stats.rankdata() 来确定数组中每个值的排名。

import numpy as np
import scipy.stats
x = np.arange(10, 20)
y = np.array([2, 1, 4, 5, 8, 12, 18, 25, 96, 48])
z = np.array([5, 3, 2, 1, 0, -2, -8, -11, -15, -16])

# 获取排名序
scipy.stats.rankdata(x)  # 单调递增
array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.])
scipy.stats.rankdata(y)
array([ 2.,  1.,  3.,  4.,  5.,  6.,  7.,  8., 10.,  9.])
scipy.stats.rankdata(z) # 单调递减
array([10.,  9.,  8.,  7.,  6.,  5.,  4.,  3.,  2.,  1.])

rankdata() 将nan值视为极大。

scipy.stats.rankdata([8, np.nan, 0, 2])
array([3., 4., 1., 2.])

等级相关性:NumPy 和 SciPy 实现

使用 scipy.stats.spearmanr() 计算 Spearman 相关系数。

result = scipy.stats.spearmanr(x, y)
result
SpearmanrResult(correlation=0.9757575757575757, pvalue=1.4675461874042197e-06)

result.correlation
0.9757575757575757

result.pvalue
1.4675461874042197e-06

rho, p = scipy.stats.spearmanr(x, y)
rho
0.9757575757575757

p
1.4675461874042197e-06

等级相关性:Pandas 实现

使用 Pandas 计算 Spearman 和 Kendall 相关系数。

import numpy as np
import scipy.stats
x = np.arange(10, 20)
y = np.array([2, 1, 4, 5, 8, 12, 18, 25, 96, 48])
z = np.array([5, 3, 2, 1, 0, -2, -8, -11, -15, -16])

x, y, z = pd.Series(x), pd.Series(y), pd.Series(z)
xy = pd.DataFrame({'x-values': x, 'y-values': y})
xyz = pd.DataFrame({'x-values': x, 'y-values': y, 'z-values': z})

计算 Spearman 的 rho,method=spearman。

x.corr(y, method='spearman')
0.9757575757575757

xy.corr(method='spearman')
          x-values  y-values
x-values  1.000000  0.975758
y-values  0.975758  1.000000

xyz.corr(method='spearman')
          x-values  y-values  z-values
x-values  1.000000  0.975758 -1.000000
y-values  0.975758  1.000000 -0.975758
z-values -1.000000 -0.975758  1.000000

xy.corrwith(z, method='spearman')
x-values   -1.000000
y-values   -0.975758
dtype: float64

计算 Kendall 的 tau, method=kendall。

x.corr(y, method='kendall')
0.911111111111111

xy.corr(method='kendall')
          x-values  y-values
x-values  1.000000  0.911111
y-values  0.911111  1.000000

xyz.corr(method='kendall')
          x-values  y-values  z-values
x-values  1.000000  0.911111 -1.000000
y-values  0.911111  1.000000 -0.911111
z-values -1.000000 -0.911111  1.000000

xy.corrwith(z, method='kendall')
x-values   -1.000000
y-values   -0.911111
dtype: float64

相关性的可视化

数据可视化在统计学和数据科学中非常重要。可以帮助更好地理解的数据,并更好地了解特征之间的关系。

这里使用 matplotlib 来进行数据可视化。

import matplotlib.pyplot as plt
plt.style.use('ggplot')

import numpy as np
import scipy.stats
x = np.arange(10, 20)
y = np.array([2, 1, 4, 5, 8, 12, 18, 25, 96, 48])
z = np.array([5, 3, 2, 1, 0, -2, -8, -11, -15, -16])
xyz = np.array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
                [2, 1, 4, 5, 8, 12, 18, 25, 96, 48],
                [5, 3, 2, 1, 0, -2, -8, -11, -15, -16]])

带有回归线的 XY 图

使用 linregress() 获得回归线的斜率和截距,以及相关系数。

slope, intercept, r, p, stderr = scipy.stats.linregress(x, y)

构建线性回归公式。

line = f' y={intercept:.2f}+{slope:.2f}x, r={r:.2f}'
line
'y=-85.93+7.44x, r=0.76'

.plot() 绘图

fig, ax = plt.subplots()
ax.plot(x, y, linewidth=0, marker='s', label='Data points')
ax.plot(x, intercept + slope * x, label=line)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.legend(facecolor='white')
plt.show()

相关矩阵的热图 matplotlib

处理特征较多的相关矩阵用热图方式比较理想。

corr_matrix = np.corrcoef(xyz).round(decimals=2)
corr_matrix
array([[ 1.  ,  0.76, -0.97],
       [ 0.76,  1.  , -0.83],
       [-0.97, -0.83,  1.  ]])

其中为了表示方便将相关的数据四舍五入后用 .imshow() 绘制。

fig, ax = plt.subplots()
im = ax.imshow(corr_matrix)
im.set_clim(-1, 1)
ax.grid(False)
ax.xaxis.set(ticks=(0, 1, 2), ticklabels=('x', 'y', 'z'))
ax.yaxis.set(ticks=(0, 1, 2), ticklabels=('x', 'y', 'z'))
ax.set_ylim(2.5, -0.5)
for i in range(3):
    for j in range(3):
        ax.text(j, i, corr_matrix[i, j], ha='center', va='center',
                color='r')
cbar = ax.figure.colorbar(im, ax=ax, format='% .2f')
plt.show()

相关矩阵的热图 seaborn

import seaborn as sns

plt.figure(figsize=(11, 9),dpi=100)
sns.heatmap(data=corr_matrix,
            annot_kws={'size':8,'weight':'normal', 'color':'#253D24'},#数字属性设置,例如字号、磅值、颜色        
           )

以上就是详解Python进行数据相关性分析的三种方式的详细内容,更多关于Python数据相关性分析的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

详解Python进行数据相关性分析的三种方式

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python进行数据相关性分析的三种方式是什么

本文小编为大家详细介绍“Python进行数据相关性分析的三种方式是什么”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python进行数据相关性分析的三种方式是什么”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。相
2023-06-30

用Python对数据进行相关性分析

这些维度关系的分析就需要用一些方法来进行衡量,相关性分析就是其中一种。本文就用python来解释一下数据的相关性分析。

如何用Python对数据进行相关性分析

这期内容当中小编将会给大家带来有关如何用Python对数据进行相关性分析,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。在进行数据分析时,我们所用到的数据往往都不是一维的,而这些数据在分析时难度就增加了不少
2023-06-16

Python写入MySQL数据库的三种方式详解

目录场景一:数据不需要频繁的写入mysql场景二:数据是增量的,需要自动化并频繁写入mysql方式一方式二总结大家好,python 读取数据自动写入 MySQL 数据库,这个需求在工作中是非常普遍的,主要涉及到 python 操作数据库,读
2022-06-27

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录