我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python多线程性能测试之快速mock数据

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python多线程性能测试之快速mock数据

背景

在我们测试工作中,性能测试也是避免不了的,因此在性能测试前期准备工作中,需要 mock 足够批量的数据进行压测。那么怎么能在短时间内快速 mock 出想要的格式数据和足够量的数据进行压测?那么往下看。

安装相关类包

  • pip install kafka
  • pip install appmetrics
  • pip install faker
  • pip install pykafka

快速 mock kafka 批量测试数据

# -* coding:utf8 *-
from pykafka import KafkaClient
import uuid
import time
import threading
from appmetrics import metrics
from faker import Faker
import os
fake = Faker("zh-cn")
PATH = lambda p: os.path.abspath(
    os.path.join(os.path.dirname(__file__), p)
)
meter = metrics.new_meter("meter_test")
host_producer = 'host地址'
def data_info():
    uid = str(uuid.uuid4())
    suid = ''.join(uid.split('-'))
    return suid
def data_result():
    #数据格式可自行定义
    data = f"{data_info()},{fake.phone_number()},111111111111,LOL-UZI"
    return data
def mock_request():
    client_producer = KafkaClient(hosts=host_producer)
    topicdocu = client_producer.topics['XXXXXXX-TOPIC']
    producer = topicdocu.get_producer(sync=False) # sync=False  关闭同步,使用异步
    while True:
        data_uni = data_result()
        producer.produce(bytes(data_uni, encoding='utf-8'))
        meter.notify(1) # 请求一次 记录器打点一次
        # i = i - 1
    producer.stop()
def print_meter():
    while True:
        print(meter.get())
        time.sleep(1)
def thread_request(nums):
    t1 = []
    for i in range(nums):
        if i == 0:
            #该线程是为了记录每秒打点作用
            t = threading.Thread(target=print_meter, name="T" + str(i))
        else:
            t = threading.Thread(target=mock_request, name="T" + str(i))
        t.setDaemon(True)
        t1.append(t)
    for t in t1:
        t.start()
    for t in t1:
        t.join()
#
#
if __name__ == '__main__':
    thread_request(101)

appmetrics 使用方法

Meters

Meters,度量一系列事件发生的速率 (rate),例如 TPS。Meters 会统计最近 1 分钟,5 分钟,15 分钟,还有全部时间的速率。

meter = metrics.new_meter(“meter_test”)
meter.notify(1)
meter.notify(1)
meter.notify(3)
meter.get()

返回结果

{'count': 5, 'kind': 'meter', 'five': 0.0066114184713530035, 'mean': 0.27743058841197027, 'fifteen': 0.0022160607980413085, 'day': 2.3147478365093123e-05, 'one': 0.031982234148270686}

以上就是python批量测试多线程之快速mock数据的详细内容,更多关于python测试多线程mock数据的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python多线程性能测试之快速mock数据

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python多线程性能测试之快速mock数据测试分析

今天小编给大家分享一下python多线程性能测试之快速mock数据测试分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。安装
2023-07-02

python多线程测试接口性能,就是这么简单

除了使用性能测试工具进行性能测试,我们也可以直接用python多线程进行性能测试。下面,使用这几个模块,对一个查询接口做性能测试:requests:发送http请求json:返回的字符串转换成json格式threading:多线程time:
2023-06-01

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录