redis如何实现分布式限流
Redis可以使用令牌桶算法来实现分布式限流。令牌桶算法是一种常用的限流算法,它通过维护一个固定容量的令牌桶,每秒钟往桶里放入一定数量的令牌。当请求到达时,如果令牌桶中有足够的令牌,那么允许请求通过并消耗一个令牌;如果令牌桶中没有足够的令牌,则拒绝请求。
以下是使用Redis实现分布式限流的步骤:
1. 使用Redis的Lua脚本编写一个令牌桶算法的限流器。Lua脚本可以在Redis服务器端执行,可以保证原子性。以下是一个简单的令牌桶算法的Lua脚本示例:
```lua
local key = KEYS[1]
local capacity = tonumber(ARGV[1])
local rate = tonumber(ARGV[2])
local now = tonumber(ARGV[3])
local tokens_key = key .. ":tokens"
local timestamp_key = key .. ":timestamp"
local tokens = tonumber(redis.call("get", tokens_key))
if not tokens then
tokens = capacity
end
local last_refreshed = tonumber(redis.call("get", timestamp_key))
if not last_refreshed then
last_refreshed = now
end
local delta = math.max(0, now - last_refreshed)
local filled_tokens = math.min(capacity, tokens + delta * rate)
local allowed = filled_tokens >= 1
local new_tokens = filled_tokens
local new_timestamp = last_refreshed
if allowed then
new_tokens = filled_tokens - 1
new_timestamp = now
end
redis.call("set", tokens_key, new_tokens)
redis.call("set", timestamp_key, new_timestamp)
return allowed
```
2. 在代码中调用该Lua脚本,传入限流器的唯一标识符、限流器的容量、限流器的速率以及当前时间戳作为参数,获取限流结果。
```java
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
public class RedisRateLimiter {
private JedisPool jedisPool;
public RedisRateLimiter(JedisPool jedisPool) {
this.jedisPool = jedisPool;
}
public boolean allowRequest(String key, int capacity, int rate) {
try (Jedis jedis = jedisPool.getResource()) {
long now = System.currentTimeMillis();
Object result = jedis.eval(
"local key = KEYS[1]\n" +
"local capacity = tonumber(ARGV[1])\n" +
"local rate = tonumber(ARGV[2])\n" +
"local now = tonumber(ARGV[3])\n" +
"\n" +
"local tokens_key = key .. \":tokens\"\n" +
"local timestamp_key = key .. \":timestamp\"\n" +
"\n" +
"local tokens = tonumber(redis.call(\"get\", tokens_key))\n" +
"if not tokens then\n" +
" tokens = capacity\n" +
"end\n" +
"\n" +
"local last_refreshed = tonumber(redis.call(\"get\", timestamp_key))\n" +
"if not last_refreshed then\n" +
" last_refreshed = now\n" +
"end\n" +
"\n" +
"local delta = math.max(0, now - last_refreshed)\n" +
"local filled_tokens = math.min(capacity, tokens + delta * rate)\n" +
"local allowed = filled_tokens >= 1\n" +
"\n" +
"local new_tokens = filled_tokens\n" +
"local new_timestamp = last_refreshed\n" +
"if allowed then\n" +
" new_tokens = filled_tokens - 1\n" +
" new_timestamp = now\n" +
"end\n" +
"\n" +
"redis.call(\"set\", tokens_key, new_tokens)\n" +
"redis.call(\"set\", timestamp_key, new_timestamp)\n" +
"\n" +
"return allowed",
1,
key,
Integer.toString(capacity),
Integer.toString(rate),
Long.toString(now)
);
return (Boolean) result;
}
}
}
```
3. 在需要进行限流的地方调用RedisRateLimiter的allowRequest方法进行
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341