我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python实现GPU加速的基本操作

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python实现GPU加速的基本操作

CUDA的线程与块

GPU从计算逻辑来讲,可以认为是一个高并行度的计算阵列,我们可以想象成一个二维的像围棋棋盘一样的网格,每一个格子都可以执行一个单独的任务,并且所有的格子可以同时执行计算任务,这就是GPU加速的来源。那么刚才所提到的棋盘,每一列都认为是一个线程,并有自己的线程编号;每一行都是一个块,有自己的块编号。我们可以通过一些简单的程序来理解这其中的逻辑:

用GPU打印线程编号


# numba_cuda_test.py

from numba import cuda

@cuda.jit
def gpu():
    print ('threadIdx:', cuda.threadIdx.x)

if __name__ == '__main__':
    gpu[2,4]()

threadIdx: 0
threadIdx: 1
threadIdx: 2
threadIdx: 3
threadIdx: 0
threadIdx: 1
threadIdx: 2
threadIdx: 3

用GPU打印块编号


# numba_cuda_test.py

from numba import cuda

@cuda.jit
def gpu():
    print ('blockIdx:', cuda.blockIdx.x)

if __name__ == '__main__':
    gpu[2,4]()

blockIdx: 0
blockIdx: 0
blockIdx: 0
blockIdx: 0
blockIdx: 1
blockIdx: 1
blockIdx: 1
blockIdx: 1

用GPU打印块的维度


# numba_cuda_test.py

from numba import cuda

@cuda.jit
def gpu():
    print ('blockDim:', cuda.blockDim.x)

if __name__ == '__main__':
    gpu[2,4]()

blockDim: 4
blockDim: 4
blockDim: 4
blockDim: 4
blockDim: 4
blockDim: 4
blockDim: 4
blockDim: 4

用GPU打印线程的维度


# numba_cuda_test.py

from numba import cuda

@cuda.jit
def gpu():
    print ('gridDim:', cuda.gridDim.x)

if __name__ == '__main__':
    gpu[2,4]()

gridDim: 2
gridDim: 2
gridDim: 2
gridDim: 2
gridDim: 2
gridDim: 2
gridDim: 2
gridDim: 2

总结

我们可以用如下的一张图来总结刚才提到的GPU网格的概念,在上面的测试案例中,我们在GPU上划分一块2*4大小的阵列用于我们自己的计算,每一行都是一个块,每一列都是一个线程,所有的网格是同时执行计算的内容的(如果没有逻辑上的依赖的话)。

GPU所支持的最大并行度

我们可以用几个简单的程序来测试一下GPU的并行度,因为每一个GPU上的网格都可以独立的执行一个任务,因此我们认为可以分配多少个网格,就有多大的并行度。本机的最大并行应该是在\(2^40\),因此假设我们给GPU分配\(2^50\)大小的网格,程序就会报错:


# numba_cuda_test.py

from numba import cuda

@cuda.jit
def gpu():
    pass

if __name__ == '__main__':
    gpu[2**50,1]()
    print ('Running Success!')

运行结果如下:

Traceback (most recent call last):
File "numba_cuda_test.py", line 10, in <module>
gpu[2**50,1]()
File "/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/compiler.py", line 822, in __call__
self.stream, self.sharedmem)
File "/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/compiler.py", line 966, in call
kernel.launch(args, griddim, blockdim, stream, sharedmem)
File "/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/compiler.py", line 699, in launch
cooperative=self.cooperative)
File "/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/cudadrv/driver.py", line 2100, in launch_kernel
None)
File "/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/cudadrv/driver.py", line 300, in safe_cuda_api_call
self._check_error(fname, retcode)
File "/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/cudadrv/driver.py", line 335, in _check_error
raise CudaAPIError(retcode, msg)
numba.cuda.cudadrv.driver.CudaAPIError: [1] Call to cuLaunchKernel results in CUDA_ERROR_INVALID_VALUE

而如果我们分配一个额定大小之内的网格,程序就可以正常的运行:


# numba_cuda_test.py

from numba import cuda

@cuda.jit
def gpu():
    pass

if __name__ == '__main__':
    gpu[2**30,1]()
    print ('Running Success!')

这里加了一个打印输出:

Running Success!

需要注意的是,两个维度上的可分配大小是不一致的,比如本机的上限是分配230*210大小的空间用于计算:


# numba_cuda_test.py

from numba import cuda

@cuda.jit
def gpu():
    pass

if __name__ == '__main__':
    gpu[2**30,2**10]()
    print ('Running Success!')

同样的,只要在允许的范围内都是可以执行成功的:

Running Success!

如果在本机上有多块GPU的话,还可以通过select_device的指令来选择执行指令的GPU编号:


# numba_cuda_test.py

from numba import cuda
cuda.select_device(1)
import time

@cuda.jit
def gpu():
    pass

if __name__ == '__main__':
    gpu[2**30,2**10]()
    print ('Running Success!')

如果两块GPU的可分配空间一致的话,就可以运行成功:

Running Success!

GPU的加速效果

前面我们经常提到一个词叫GPU加速,GPU之所以能够实现加速的效果,正源自于GPU本身的高度并行性。这里我们直接用一个数组求和的案例来说明GPU的加速效果,这个案例需要得到的结果是\(b_j=a_j+b_j\),将求和后的值赋值在其中的一个输入数组之上,以节省一些内存空间。当然,如果这个数组还有其他的用途的话,是不能这样操作的。具体代码如下:


# gpu_add.py

from numba import cuda
cuda.select_device(1)
import numpy as np
import time

@cuda.jit
def gpu(a,b,DATA_LENGHTH):
    idx = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x
    if idx < DATA_LENGHTH:
        b[idx] += a[idx]

if __name__ == '__main__':
    np.random.seed(1)
    DATA_EXP_LENGTH = 20
    DATA_DIMENSION = 2**DATA_EXP_LENGTH
    np_time = 0.0
    nb_time = 0.0
    for i in range(100):
        a = np.random.randn(DATA_DIMENSION).astype(np.float32)
        b = np.random.randn(DATA_DIMENSION).astype(np.float32)
        a_cuda = cuda.to_device(a)
        b_cuda = cuda.to_device(b)
        time0 = time.time()
        gpu[DATA_DIMENSION,4](a_cuda,b_cuda,DATA_DIMENSION)
        time1 = time.time()
        c = b_cuda.copy_to_host()
        time2 = time.time()
        d = np.add(a,b)
        time3 = time.time()
        if i == 0:
            print ('The error between numba and numpy is: ', sum(c-d))
            continue
        np_time += time3 - time2
        nb_time += time1 - time0
    print ('The time cost of numba is: {}s'.format(nb_time))
    print ('The time cost of numpy is: {}s'.format(np_time))

需要注意的是,基于Numba实现的Python的GPU加速程序,采用的jit即时编译的模式,也就是说,在运行调用到相关函数时,才会对其进行编译优化。换句话说,第一次执行这一条指令的时候,事实上达不到加速的效果,因为这个运行的时间包含了较长的一段编译时间。但是从第二次运行调用开始,就不需要重新编译,这时候GPU加速的效果就体现出来了,运行结果如下:

$ python3 gpu_add.py The error between numba and numpy is: 0.0
The time cost of numba is: 0.018711328506469727s
The time cost of numpy is: 0.09502553939819336s

可以看到,即使是相比于Python中优化程度十分强大的的Numpy实现,我们自己写的GPU加速的程序也能够达到5倍的加速效果(在前面一篇博客中,针对于特殊计算场景,加速效果可达1000倍以上),而且可定制化程度非常之高。

总结概要

本文针对于Python中使用Numba的GPU加速程序的一些基本概念和实现的方法,比如GPU中的线程和模块的概念,以及给出了一个矢量加法的代码案例,进一步说明了GPU加速的效果。需要注意的是,由于Python中的Numba实现是一种即时编译的技术,因此第一次运算时的时间会明显较长,所以我们一般说GPU加速是指从第二步开始的运行时间。对于一些工业和学界常见的场景,比如分子动力学模拟中的系统演化,或者是深度学习与量子计算中的参数优化,都是相同维度参数多步运算的一个过程,非常适合使用即时编译的技术,配合以GPU高度并行化的加速效果,能够在实际工业和学术界的各种场景下发挥巨大的作用。

到此这篇关于Python实现GPU加速的基本操作的文章就介绍到这了,更多相关Python GPU加速内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python实现GPU加速的基本操作

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python对kafka的基本操作

from kafka import KafkaProducerfrom kafka import KafkaConsumerfrom kafka.structs import TopicPartitionimport timebootstr
2023-01-31

Golang连接PostgreSQL基本操作的实现

本文详细介绍了如何使用Go语言连接PostgreSQL数据库。包括安装配置、连接数据库、执行查询、插入更新数据、事务管理、连接池优化以及最佳实践。通过这些操作,开发者可以轻松地从Go应用程序管理和检索PostgreSQL数据。
Golang连接PostgreSQL基本操作的实现
2024-04-02

Python+OpenCV实现图像基本操作的示例详解

这篇文章主要为大家详细介绍了Python通过OpenCV实现图像的一些基本处理操作的方法,文中的示例代码简洁易懂,具有一定的参考价值,感兴趣的可以学习一下
2023-05-16

Python中列表的基本操作

本篇内容主要讲解“Python中列表的基本操作”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python中列表的基本操作”吧!如何创建列表?列表是最常用的Python数据类型,它可以作为一个方括
2023-06-02

Python实现基本数据结构中栈的操作示例

本文实例讲述了Python实现基本数据结构中栈的操作。分享给大家供大家参考,具体如下:#! /usr/bin/env python #coding=utf-8 #Python实现基本数据结构---栈操作 class Stack(object
2022-06-04

Java实现二叉树的基本操作详解

这篇文章主要为大家详细介绍了Java数据结构与算法中二叉树的基本操作,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以了解一下
2022-11-13

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录