我的编程空间,编程开发者的网络收藏夹
学习永远不晚

gozero微服务高在请求量下如何优化

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

gozero微服务高在请求量下如何优化

引言

前两篇文章我们介绍了缓存使用的各种最佳实践,首先介绍了缓存使用的基本姿势,分别是如何利用go-zero自动生成的缓存和逻辑代码中缓存代码如何写,接着讲解了在面对缓存的穿透、击穿、雪崩等常见问题时的解决方案,最后还重点讲解了如何保证缓存的一致性。

因为缓存对于高并发服务来说实在是太重要了,所以这篇文章我们还会继续一起学习下缓存相关的知识。

本地缓存

当我们遇到极端热点数据查询的时候,这个时候就要考虑本地缓存了。热点本地缓存主要部署在应用服务器的代码中,用于阻挡热点查询对于Redis等分布式缓存或者数据库的压力。

在我们的商城中,首页Banner中会放一些广告商品或者推荐商品,这些商品的信息由运营在管理后台录入和变更。这些商品的请求量非常大,即使是Redis也很难扛住,所以这里我们可以使用本地缓存来进行优化。

在product库中先建一张商品运营表product_operation,为了简化只保留必要字段,product_id为推广运营的商品id,status为运营商品的状态,status为1的时候会在首页Banner中展示该商品。

CREATE TABLE `product_operation` (
  `id` bigint unsigned NOT NULL AUTO_INCREMENT,
  `product_id` bigint unsigned NOT NULL DEFAULT 0 COMMENT '商品id',
  `status` int NOT NULL DEFAULT '1' COMMENT '运营商品状态 0-下线 1-上线',
  `create_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `update_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (`id`),
  KEY `ix_update_time` (`update_time`)
) ENGINE=InnoDB  DEFAULT CHARSET=utf8mb4 COMMENT='商品运营表';

本地缓存的实现比较简单,我们可以使用map来自己实现,在go-zero的collection中提供了Cache来实现本地缓存的功能,我们直接拿来用,重复造轮子从来不是一个明智的选择,localCacheExpire为本地缓存过期时间,Cache提供了Get和Set方法,使用非常简单

localCache, err := collection.NewCache(localCacheExpire)

先从本地缓存中查找,如果命中缓存则直接返回。没有命中缓存的话需要先从数据库中查询运营位商品id,然后再聚合商品信息,最后回塞到本地缓存中。详细代码逻辑如下:

func (l *OperationProductsLogic) OperationProducts(in *product.OperationProductsRequest) (*product.OperationProductsResponse, error) {
  opProducts, ok := l.svcCtx.LocalCache.Get(operationProductsKey)
  if ok {
    return &product.OperationProductsResponse{Products: opProducts.([]*product.ProductItem)}, nil
  }
  pos, err := l.svcCtx.OperationModel.OperationProducts(l.ctx, validStatus)
  if err != nil {
    return nil, err
  }
  var pids []int64
  for _, p := range pos {
    pids = append(pids, p.ProductId)
  }
  products, err := l.productListLogic.productsByIds(l.ctx, pids)
  if err != nil {
    return nil, err
  }
  var pItems []*product.ProductItem
  for _, p := range products {
    pItems = append(pItems, &product.ProductItem{
      ProductId: p.Id,
      Name:      p.Name,
    })
  }
  l.svcCtx.LocalCache.Set(operationProductsKey, pItems)
  return &product.OperationProductsResponse{Products: pItems}, nil
}

使用grpurl调试工具请求接口,第一次请求cache miss后,后面的请求都会命中本地缓存,等到本地缓存过期后又会重新回源db加载数据到本地缓存中

~ grpcurl -plaintext -d '{}' 127.0.0.1:8081 product.Product.OperationProducts
{
  "products": [
    {
      "productId": "32",
      "name": "电风扇6"
    },
    {
      "productId": "31",
      "name": "电风扇5"
    },
    {
      "productId": "33",
      "name": "电风扇7"
    }
  ]
}

注意,并不是所有信息都适用于本地缓存,本地缓存的特点是请求量超高,同时业务上能够允许一定的不一致,因为本地缓存一般不会主动做更新操作,需要等到过期后重新回源db后再更新。所以在业务中要视情况而定看是否需要使用本地缓存。

自动识别热点数据

首页Banner场景是由运营人员来配置的,也就是我们能提前知道可能产生的热点数据,但有些情况我们是不能提前预知数据会成为热点的。

所以就需要我们能自适应地自动的识别这些热点数据,然后把这些数据提升为本地缓存。

我们维护一个滑动窗口,比如滑动窗口设置为10s,就是要统计这10s内有哪些key被高频访问,一个滑动窗口中对应多个Bucket,每个Bucket中对应一个map,map的key为商品的id,value为商品对应的请求次数。

接着我们可以定时的(比如10s)去统计当前所有Buckets中的key的数据,然后把这些数据导入到大顶堆中,轻而易举的可以从大顶堆中获取topK的key,我们可以设置一个阈值,比如在一个滑动窗口时间内某一个key访问频次超过500次,就认为该key为热点key,从而自动地把该key升级为本地缓存。

缓存使用技巧

下面介绍一些缓存使用的小技巧

  • key的命名要尽量易读,即见名知意,在易读的前提下长度要尽可能的小,以减少资源的占用,对于value来说可以用int就尽量不要用string,对于小于N的value,redis内部有shared_object缓存。
  • 在redis使用hash的情况下进行key的拆分,同一个hash key会落到同一个redis节点,hash过大的情况下会导致内存以及请求分布的不均匀,考虑对hash进行拆分为小的hash,使得节点内存均匀避免单节点请求热点。
  • 为了避免不存在的数据请求,导致每次请求都缓存miss直接打到数据库中,进行空缓存的设置。
  • 缓存中需要存对象的时候,序列化尽量使用protobuf,尽可能减少数据大小。
  • 新增数据的时候要保证缓存务必存在的情况下再去操作新增,使用Expire来判断缓存是否存在。
  • 对于存储每日登录场景的需求,可以使用BITSET,为了避免单个BITSET过大或者热点,可以进行sharding。
  • 在使用sorted set的时候,避免使用zrange或者zrevrange返回过大的集合,复杂度较高。
  • 在进行缓存操作的时候尽量使用PIPELINE,但也要注意避免集合过大。
  • 避免超大的value。
  • 缓存尽量要设置过期时间。
  • 慎用全量操作命令,比如Hash类型的HGETALL、Set类型的SMEMBERS等,这些操作会对Hash和Set的底层数据结构进行全量扫描,如果数据量较多的话,会阻塞Redis主线程。
  • 获取集合类型的全量数据可以使用SSCAN、HSCAN等命令分批返回集合中的数据,减少对主线程的阻塞。
  • 慎用MONITOR命令,MONITOR命令会把监控到的内容持续写入输出缓冲区,如果线上命令操作很多,输出缓冲区很快就会溢出,会对Redis性能造成影响。
  • 生产环境禁用KEYS、FLUSHALL、FLUSHDB等命令。

结束语

已知的热点缓存比较简单,从数据库中提前加载到内存中即可,未知的热点缓存我们需要自适应的识别出热点的数据,然后把这些热点的数据升级为本地缓存。最后介绍了一些实际生产中缓存使用的一些小技巧,在生产环境中要活灵活用尽量避免问题的产生。

代码仓库: https://github.com/zhoushuguang/lebron

项目地址: https://github.com/zeromicro/go-zero

本篇文章介绍了如何使用本地热点缓存应对超高的请求,热点缓存又分为已知的热点缓存和未知的热点缓存,希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

gozero微服务高在请求量下如何优化

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

go zero微服务高在请求量下怎么优化

本文小编为大家详细介绍“go zero微服务高在请求量下怎么优化”,内容详细,步骤清晰,细节处理妥当,希望这篇“go zero微服务高在请求量下怎么优化”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。本地缓存当我们
2023-07-02

如何使用jMeter构造大量并发HTTP请求进行微服务性能测试

这篇文章将为大家详细讲解有关如何使用jMeter构造大量并发HTTP请求进行微服务性能测试,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。比如我开发好了一个微服务,想测试其在大并发请求下的性能表现如何。比较
2023-06-02

阿里云ECS部署微服务如何利用流量进行优化

随着微服务架构的普及,越来越多的企业开始将其业务部署到云上。然而,对于那些依赖流量进行业务优化的企业来说,如何在阿里云ECS上部署微服务并充分利用流量是一个重要问题。本文将详细说明如何解决这个问题。随着互联网的不断发展,微服务架构已成为一种主流的软件开发方式。微服务架构将一个复杂的系统拆分为多个小型、独立的服务,
阿里云ECS部署微服务如何利用流量进行优化
2023-12-17

请谈谈PHP中如何高效处理大量数据?(在PHP中,应如何优化大数据处理性能?)

在PHP中高效处理大量数据,优化数据库(选择NoSQL数据库、创建索引、分区)、内存(缓存数据、优化内存使用)、代码(使用循环迭代器、避免重复查询、分页缩减),并利用分布式处理(队列作业、消息传递、分布式缓存)。其他技巧包括:使用PHP加速器、启用gzip压缩、优化服务器配置。通过这些最佳实践,PHP应用程序可以有效处理大数据,提升在大数据时代的性能和可扩展性。
请谈谈PHP中如何高效处理大量数据?(在PHP中,应如何优化大数据处理性能?)
2024-04-02

Nginx在Docker中的静态资源服务配置与优化(如何在Docker中为Nginx配置高效的静态资源服务?)

在Docker环境中配置Nginx提供高效的静态资源服务涉及创建Dockerfile、构建镜像和运行容器。Nginx配置(nginx.conf)指定静态文件位置和处理规则。优化技巧包括启用gzip压缩、设置缓存头和使用CDN。监控和故障排除对于确保服务正常运行至关重要,可以利用Nginx日志、监控工具和测试工具。通过遵循这些步骤和技巧,可以在Docker中为Nginx配置高效的静态资源服务。
Nginx在Docker中的静态资源服务配置与优化(如何在Docker中为Nginx配置高效的静态资源服务?)
2024-04-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录