我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Pytorch写数字怎么识别LeNet模型

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Pytorch写数字怎么识别LeNet模型

这篇文章主要为大家分析了Pytorch写数字怎么识别LeNet模型的相关知识点,内容详细易懂,操作细节合理,具有一定参考价值。如果感兴趣的话,不妨跟着跟随小编一起来看看,下面跟着小编一起深入学习“Pytorch写数字怎么识别LeNet模型”的知识吧。

LeNet网络

Pytorch写数字怎么识别LeNet模型

LeNet网络过卷积层时候保持分辨率不变,过池化层时候分辨率变小。实现如下

from PIL import Imageimport cv2import matplotlib.pyplot as pltimport torchvisionfrom torchvision import transformsimport torchfrom torch.utils.data import DataLoaderimport torch.nn as nnimport numpy as npimport tqdm as tqdmclass LeNet(nn.Module):    def __init__(self) -> None:        super().__init__()        self.sequential = nn.Sequential(nn.Conv2d(1,6,kernel_size=5,padding=2),nn.Sigmoid(),                                        nn.AvgPool2d(kernel_size=2,stride=2),                                        nn.Conv2d(6,16,kernel_size=5),nn.Sigmoid(),                                        nn.AvgPool2d(kernel_size=2,stride=2),                                        nn.Flatten(),                                        nn.Linear(16*25,120),nn.Sigmoid(),                                        nn.Linear(120,84),nn.Sigmoid(),                                        nn.Linear(84,10))                def forward(self,x):        return self.sequential(x)class MLP(nn.Module):    def __init__(self) -> None:        super().__init__()        self.sequential = nn.Sequential(nn.Flatten(),                          nn.Linear(28*28,120),nn.Sigmoid(),                          nn.Linear(120,84),nn.Sigmoid(),                          nn.Linear(84,10))                def forward(self,x):        return self.sequential(x)epochs = 15batch = 32lr=0.9loss = nn.CrossEntropyLoss()model = LeNet()optimizer = torch.optim.SGD(model.parameters(),lr)device = torch.device('cuda')root = r"./"trans_compose  = transforms.Compose([transforms.ToTensor(),                    ])train_data = torchvision.datasets.MNIST(root,train=True,transform=trans_compose,download=True)test_data = torchvision.datasets.MNIST(root,train=False,transform=trans_compose,download=True)train_loader = DataLoader(train_data,batch_size=batch,shuffle=True)test_loader = DataLoader(test_data,batch_size=batch,shuffle=False)model.to(device)loss.to(device)# model.apply(init_weights)for epoch in range(epochs):  train_loss = 0  test_loss = 0  correct_train = 0  correct_test = 0  for index,(x,y) in enumerate(train_loader):    x = x.to(device)    y = y.to(device)    predict = model(x)    L = loss(predict,y)    optimizer.zero_grad()    L.backward()    optimizer.step()    train_loss = train_loss + L    correct_train += (predict.argmax(dim=1)==y).sum()  acc_train = correct_train/(batch*len(train_loader))  with torch.no_grad():    for index,(x,y) in enumerate(test_loader):      [x,y] = [x.to(device),y.to(device)]      predict = model(x)      L1 = loss(predict,y)      test_loss = test_loss + L1      correct_test += (predict.argmax(dim=1)==y).sum()    acc_test = correct_test/(batch*len(test_loader))  print(f'epoch:{epoch},train_loss:{train_loss/batch},test_loss:{test_loss/batch},acc_train:{acc_train},acc_test:{acc_test}')

训练结果

epoch:12,train_loss:2.235553741455078,test_loss:0.3947642743587494,acc_train:0.9879833459854126,acc_test:0.9851238131523132
epoch:13,train_loss:2.028963804244995,test_loss:0.3220392167568207,acc_train:0.9891499876976013,acc_test:0.9875199794769287
epoch:14,train_loss:1.8020273447036743,test_loss:0.34837451577186584,acc_train:0.9901833534240723,acc_test:0.98702073097229

泛化能力测试

找了一张图片,将其分割成只含一个数字的图片进行测试

Pytorch写数字怎么识别LeNet模型

images_np = cv2.imread("/content/R-C.png",cv2.IMREAD_GRAYSCALE)h,w = images_np.shapeimages_np = np.array(255*torch.ones(h,w))-images_np#图片反色images = Image.fromarray(images_np)plt.figure(1)plt.imshow(images)test_images = []for i in range(10):  for j in range(16):    test_images.append(images_np[h//10*i:h//10+h//10*i,w//16*j:w//16*j+w//16])sample = test_images[77]sample_tensor = torch.tensor(sample).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)sample_tensor = torch.nn.functional.interpolate(sample_tensor,(28,28))predict = model(sample_tensor)output = predict.argmax()print(output)plt.figure(2)plt.imshow(np.array(sample_tensor.squeeze().to('cpu')))

Pytorch写数字怎么识别LeNet模型

此时预测结果为4,预测正确。从这段代码中可以看到有一个反色的步骤,若不反色,结果会受到影响,如下图所示,预测为0,错误。
模型用于输入的图片是单通道的黑白图片,这里由于可视化出现了黄色,但实际上是黑白色,反色操作说明了数据的预处理十分的重要,很多数据如果是不清理过是无法直接用于推理的。

Pytorch写数字怎么识别LeNet模型

将所有用来泛化性测试的图片进行准确率测试:

correct = 0i = 0cnt = 1for sample in test_images:  sample_tensor = torch.tensor(sample).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)  sample_tensor = torch.nn.functional.interpolate(sample_tensor,(28,28))  predict = model(sample_tensor)  output = predict.argmax()  if(output==i):    correct+=1  if(cnt%16==0):    i+=1  cnt+=1acc_g = correct/len(test_images)print(f'acc_g:{acc_g}')

如果不反色,acc_g=0.15

acc_g:0.50625

pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

关于“Pytorch写数字怎么识别LeNet模型”就介绍到这了,更多相关内容可以搜索编程网以前的文章,希望能够帮助大家答疑解惑,请多多支持编程网网站!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Pytorch写数字怎么识别LeNet模型

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Pytorch写数字怎么识别LeNet模型

这篇文章主要为大家分析了Pytorch写数字怎么识别LeNet模型的相关知识点,内容详细易懂,操作细节合理,具有一定参考价值。如果感兴趣的话,不妨跟着跟随小编一起来看看,下面跟着小编一起深入学习“Pytorch写数字怎么识别LeNet模型”
2023-06-28

pytorch如何实现手写数字图片识别

这篇文章给大家分享的是有关pytorch如何实现手写数字图片识别的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。具体内容如下数据集:MNIST数据集,代码中会自动下载,不用自己手动下载。数据集很小,不需要GPU设备
2023-06-15

pytorch如何利用ResNet18进行手写数字识别

这篇文章主要介绍了pytorch如何利用ResNet18进行手写数字识别问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-02-02

详解Python手写数字识别模型的构建与使用

这篇文章主要为大家详细介绍了Python中手写数字识别模型的构建与使用,文中的示例代码简洁易懂,对我们学习Python有一定的帮助,需要的可以参考一下
2022-12-22

PyTorch简单手写数字识别的实现过程是怎样的

本篇文章给大家分享的是有关PyTorch简单手写数字识别的实现过程是怎样的,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。一、包导入及所需数据的下载torchvision包的主要
2023-06-25

Python怎么构建人脸识别模型

这篇文章主要讲解了“Python怎么构建人脸识别模型”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python怎么构建人脸识别模型”吧!01 介绍你是否意识到,每当你上传照片到Faceboo
2023-06-16

怎么调整PyTorch模型的超参数

调整PyTorch模型的超参数通常包括学习率、批大小、优化器类型、正则化参数等。以下是一些调整超参数的方法:学习率:学习率决定了模型在每次迭代中更新参数的大小。可以通过尝试不同的学习率来找到最优的学习率,通常可以使用学习率调度器来动态调整学
怎么调整PyTorch模型的超参数
2024-03-05

java百度手写文字识别接口配置的代码怎么写

java百度手写文字识别接口配置的代码怎么写,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。代码如下所示:package org.fh.util;import org.json.
2023-06-26

pytorch怎么获得模型的计算量和参数量

这篇文章给大家分享的是有关pytorch怎么获得模型的计算量和参数量的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。方法1 自带pytorch自带方法,计算模型参数总量total = sum([param.nele
2023-06-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录