我的编程空间,编程开发者的网络收藏夹
学习永远不晚

什么是推荐系统以及其基本原理使用案例

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

什么是推荐系统以及其基本原理使用案例

基于内容的推荐系统

根据每部电影的内容以及用户已经评过分的电影来判断每个用户对每部电影的喜好程度,从而预测每个用户对没有看过的电影的评分。

这里写图片描述

电影内容矩阵X * 用户喜好矩阵θ = 电影评分表

那么,用户喜好矩阵θ(用户对于每种不同类型电影的喜好程度)如何求解呢?

用户喜好矩阵θ的代价函数:

这里写图片描述

这里写图片描述 

其中,正则化项为防止过拟合。

  • 优点:

            (1)不存在商品冷启动问题

            (2)可以明确告诉用户推荐的商品包含哪些属性

  • 缺点:

             (1)需要对内容进行透彻的分析

             (2)很少能给用户带来惊喜

             (3)存在用户冷启动的问题

基于协同过滤的推荐系统

根据电影评分表和用户喜好矩阵θ,来求得电影内容矩阵X。然后,将电影内容矩阵X与用户喜好矩阵θ相乘,这样就得到了一个完整的电影评分表。

 这里写图片描述

所以,基于协同过滤的电影推荐就是根据每个用户对于每种电影类型的喜好程度以及用户已经评过分的电影来推断每部电影的内容,从而预测每个用户对没有看过的电影的评分。

那么,如何求解电影内容矩阵X呢?

电影内容矩阵X的代价函数:

这里写图片描述

用户喜好矩阵X的获取:

(1)通过在线问卷调查来获取用户对电影的评价,但并不是所有的用户都会填写,就算填写了,也不一定全部是正确信息;

(2)通过一种更高效的方式来同时求解电影内容矩阵X和用户喜好矩阵θ.

通过前面,可以看到电影内容矩阵X和用户喜好矩阵θ,它们的第一项是相同的,因此,我们可以将这两个公式合并为一个公式来同时求解X与θ,这种方法的好处就是只用搜集用户对电影的评分。

这里写图片描述

目标是最小化这个代价函数,随机初始化X和θ,通过梯度下降法或其他优化算法求解。

(1)基于item的协同过滤

 先计算商品之间的相似度,然后根据商品之间的相似度来向用户进行推荐,如:用户购买了硬盘,则很有可能向用户推荐u盘,因为硬盘和u盘具有相似性。

在基于item的协同过滤中,只需要用户对商品的评分,首先需要计算商品之间的相似度。

如何度量商品之间的相似度?

这里写图片描述

计算出商品之间的相似度之后, 我们就能够预测用户对商品的评分。

这里写图片描述

这里写图片描述:商品i 与其他商品的相似度

这里写图片描述:用户u对其他商品的评分

分母:与商品 i 相似的商品的相似度的总和

表达的是:根据用户u对其他和商品 i 相似的商品的评分来推断用户对商品 i 的评分。 当求出用户u对所有商品的预测评分后,将其进行排序,选择得分最高的商品推荐给用户。

(2)基于用户的协同过滤

基本思想:假设我们要对用户A进行推荐,首先要找到与用户相似的其他用户,看其他用户都购买过其他商品,把其他用户购买的商品推荐给用户A。

这时就需要度量用户之间的相似度,与基于item的协同过滤类似:

这里写图片描述

这里写图片描述:用户u对商品 i 的评分

这里写图片描述:用户u对这些商品评分的平均值

计算了用户之间的相似度之后就可以预测用户对商品的评分。

 商品评分公式:

这里写图片描述

公式表示:根据与用户u相似的其他用户对商品i 的评分来推断用户u对商品i 的评分。 当求出用户u对所有商品的预测评分后,将其进行排序,选择得分最高的几个商品推荐给用户。

  • 基于协同过滤推荐系统的优点:

(1)能够根据各个用户的历史信息推断出商品的质量

(2)不需要对商品有任何专业领域的知识

  • 缺点:

(1)冷启动问题

(2)gray sheep

(3)协同过滤的复杂度会随着商品数量和用户数量的增加而增加

(4)同义词的影响

(5)shilling attack:对竞争对手的商品专门打低分,对自己的商品打高分

日常生活中,我们每个人其实都直接或者间接接触过推荐系统,也都享受过推荐系统带来的生活上便利。关于推荐系统的介绍就到这里,希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

什么是推荐系统以及其基本原理使用案例

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Linux系统性能评测基准系统配置及其原理是什么

今天就跟大家聊聊有关Linux系统性能评测基准系统配置及其原理是什么,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。概要开发人员在高性能系统的性能调优过程中,经常会碰到各种背景的噪声干
2023-06-16

Linux系统中安装lynis及基本使用方法是什么

今天就跟大家聊聊有关Linux系统中安装lynis及基本使用方法是什么,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。Lynis简介:Lynis是经过考验的安全工具,适用于运行Linu
2023-06-28

Linux文件系统的基本原理是什么及常见类型有哪些呢

Linux文件系统的基本原理是什么及常见类型有哪些呢,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。在计算机出现之前其实就有文件系统的概念了,此时的文件系统是指用于管理(存储
2023-06-16

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录