我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++使用LeetCode实现独一无二的二叉搜索树

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++使用LeetCode实现独一无二的二叉搜索树

这篇文章主要介绍C++使用LeetCode实现独一无二的二叉搜索树,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

[LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树

Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n?

Example:

Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:

1         3     3      2      1
\       /     /      / \      \
3     2     1      1   3      2
/     /       \                 \
2     1         2                 3

这道题实际上是 卡塔兰数 Catalan Numbe 的一个例子,如果对卡塔兰数不熟悉的童鞋可能真不太好做。话说其实我也是今天才知道的好嘛 -.-|||,为啥我以前都不知道捏?!为啥卡塔兰数不像斐波那契数那样人尽皆知呢,是我太孤陋寡闻么?!不过今天知道也不晚,不断的学习新的东西,这才是刷题的意义所在嘛! 好了,废话不多说了,赶紧回到题目上来吧。我们先来看当 n = 1 的情况,只能形成唯一的一棵二叉搜索树,n分别为 1,2,3 的情况如下所示:

                    1                        n = 1

                2        1                   n = 2
/          \
1            2

1         3     3      2      1           n = 3
\       /     /      / \      \
3     2     1      1   3      2
/     /       \                 \
2     1         2                 3

就跟斐波那契数列一样,我们把 n = 0 时赋为1,因为空树也算一种二叉搜索树,那么 n = 1 时的情况可以看做是其左子树个数乘以右子树的个数,左右子树都是空树,所以1乘1还是1。那么 n = 2 时,由于1和2都可以为根,分别算出来,再把它们加起来即可。n = 2 的情况可由下面式子算出(这里的 dp[i] 表示当有i个数字能组成的 BST 的个数):

dp[2] =  dp[0] * dp[1]   (1为根的情况,则左子树一定不存在,右子树可以有一个数字)

    + dp[1] * dp[0]    (2为根的情况,则左子树可以有一个数字,右子树一定不存在)

同理可写出 n = 3 的计算方法:

dp[3] =  dp[0] * dp[2]   (1为根的情况,则左子树一定不存在,右子树可以有两个数字)

    + dp[1] * dp[1]    (2为根的情况,则左右子树都可以各有一个数字)

      + dp[2] * dp[0]    (3为根的情况,则左子树可以有两个数字,右子树一定不存在)

我们根据以上的分析,可以写出代码如下:

解法一:

class Solution {public:    int numTrees(int n) {        vector<int> dp(n + 1);        dp[0] = dp[1] = 1;        for (int i = 2; i <= n; ++i) {            for (int j = 0; j < i; ++j) {                dp[i] += dp[j] * dp[i - j - 1];            }        }        return dp[n];    }};

由卡特兰数的递推式还可以推导出其通项公式,即 C(2n,n)/(n+1),表示在 2n 个数字中任取n个数的方法再除以 n+1,只要你还没有忘记高中的排列组合的知识,就不难写出下面的代码,注意在相乘的时候为了防止整型数溢出,要将结果 res 定义为长整型,参见代码如下:

解法二:

class Solution {public:    int numTrees(int n) {        long res = 1;        for (int i = n + 1; i <= 2 * n; ++i) {            res = res * i / (i - n);        }        return res / (n + 1);    }};

以上是“C++使用LeetCode实现独一无二的二叉搜索树”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注编程网行业资讯频道!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++使用LeetCode实现独一无二的二叉搜索树

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++使用LeetCode实现独一无二的二叉搜索树

这篇文章主要介绍C++使用LeetCode实现独一无二的二叉搜索树,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完![LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树
2023-06-20

C++使用LeetCode实现二叉搜索树的示例分析

这篇文章将为大家详细讲解有关C++使用LeetCode实现二叉搜索树的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。Given an integer n, generate all structu
2023-06-20

C++如何实现LeetCode之复原二叉搜索树

这篇文章给大家分享的是有关C++如何实现LeetCode之复原二叉搜索树的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。[LeetCode] 99. Recover Binary Search Tree 复原二叉搜
2023-06-20

使用JavaScript怎么实现一个二叉搜索树

今天就跟大家聊聊有关使用JavaScript怎么实现一个二叉搜索树,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。JavaScript可以做什么1.可以使网页具有交互性,例如响应用户点
2023-06-07

C++二叉搜索树BSTree如何使用

这篇文章主要介绍“C++二叉搜索树BSTree如何使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“C++二叉搜索树BSTree如何使用”文章能帮助大家解决问题。一、概念二叉搜索树又称二叉排序树,它
2023-07-05

C++中怎么利用LeetCode实现二叉搜索树迭代器

C++中怎么利用LeetCode实现二叉搜索树迭代器,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。[LeetCode] 173.Binary Search Tr
2023-06-20

C++实现验证二叉搜索树代码

本篇内容主要讲解“C++实现验证二叉搜索树代码”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C++实现验证二叉搜索树代码”吧!验证二叉搜索树Given a binary tree, determ
2023-06-20

C++二叉搜索树BSTree使用详解

二叉搜索树(BinarySearchTree)又称二叉排序树,也称作二叉查找树它或者是一棵空树,或者是具有以下性质的二叉树,若它的左子树不为空,则左子树上所有节点的值都小于根节点的值,若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
2023-03-09

C++如何实现验证二叉搜索树

本文小编为大家详细介绍“C++如何实现验证二叉搜索树”,内容详细,步骤清晰,细节处理妥当,希望这篇“C++如何实现验证二叉搜索树”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。验证二叉搜索树Example 1:In
2023-06-19

java二叉搜索树使用实例分析

本篇内容主要讲解“java二叉搜索树使用实例分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“java二叉搜索树使用实例分析”吧!概念二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性
2023-06-29

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录