我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Pandas中DataFrame常用操作指南

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Pandas中DataFrame常用操作指南

前言

Pandas是Python下一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作。

1. 基本使用:

创建DataFrame. DataFrame是一张二维的表,大家可以把它想象成一张Excel表单或者Sql表。

Excel 2007及其以后的版本的最大行数是1048576,最大列数是16384,超过这个规模的数据Excel就会弹出个框框“此文本包含多行文本,无法放置在一个工作表中”。

Pandas处理上千万的数据是易如反掌的sh事情,同时随后我们也将看到它比SQL有更强的表达能力,可以做很多复杂的操作,要写的code也更少。 说了一大堆它的好处,要实际感触还得动手码代码。

首要的任务就是创建一个DataFrame,它有几种创建方式:

  • 列表,序列(pandas.Series), numpy.ndarray的字典
  • 二维numpy.ndarray
  • 别的DataFrame
  • 结构化的记录(structured arrays)

其中,我最喜欢的是通过二维ndarray创建DataFrame,因为代码敲得最少:

import  pandas as pd
import  numpy as np
df = pd.DataFrame(np.random.randn( 3 , 4 ))
df
0 1 2 3
0 0.236175 - 0.394792 - 0.171866 0.304012
1 0.651926 0.989046 0.160389 0.482936
2 - 1.039824 0.401105 - 0.492714 - 1.220438

当然你还可以从mysql数据库或者csv文件中载入数据到dataframe。

dataframe中index用来标识行,column标识列,shape表示维度。

# 获得行索引信息
df.index
# 获得列索引信息
df.columns
# 获得df的size
df.shape
# 获得df的行数
df.shape[0]
# 获得df的 列数
df.shape[1]
# 获得df中的值
df.values

通过describe方法,我们可以对df中的数据有个大概的了解:

df.describe()
0 1 2 3
count 3.000000 3.000000 3.000000 3.000000
mean - 0.050574 0.331786 - 0.168064 - 0.144496
std 0.881574 0.694518 0.326568 0.936077
min - 1.039824 - 0.394792 - 0.492714 - 1.220438
25 % - 0.401824 0.003156 - 0.332290 - 0.458213
50 % 0.236175 0.401105 - 0.171866 0.304012
75 % 0.444051 0.695076 - 0.005739 0.393474
max 0.651926 0.989046 0.160389 0.482936

2. 数据select, del, update。

按照列名select:

df[ 0 ]
 
0 0.236175
1 0.651926
2 - 1.039824

按照行数select:

df[: 3 ] #选取前3行

按照索引select:

df.loc[ 0 ]
 
0 0.236175
1 - 0.394792
2 - 0.171866
3 0.304012

按照行数和列数select:

df.iloc[ 3 ] #选取第3行
df.iloc[ 2 : 4 ] #选取第2到第3行
df.iloc[ 0 , 1 ] #选取第0行1列的元素
dat.iloc[: 2 , : 3 ] #选取第0行到第1行,第0列到第2列区域内的元素
df1.iloc[[1,3,5],[1,3]] #选取第1,3,5行,第1,3列区域内的元素

删除某列:

del df[0]
df
1 2 3
0 - 0.394792 - 0.171866 0.304012
1 0.989046 0.160389 0.482936
2 0.401105 - 0.492714 - 1.220438

删除某行:

5
df.drop(0)
 
1 2 3
1 0.989046 0.160389 0.482936
2 0.401105 - 0.492714 - 1.220438

3.运算。

基本运算:

df[ 4 ] = df[ 1 ] + df[ 2 ]
 
1 2 3 4
0 - 0.394792 - 0.171866 0.304012 - 0.566659
1 0.989046 0.160389 0.482936 1.149435
2 0.401105 - 0.492714 - 1.220438 - 0.091609

map运算,和python中的map有些类似:

df[ 4 ]. map ( int )
0 0
1 1
2 0

apply运算:

df. apply ( sum )
 
1 0.995359
2 - 0.504192
3 - 0.433489
4 0.491167

4. Group by 操作。

pandas中的group by 操作是我的最爱,不用把数据导入excel或者mysql就可以进行灵活的group by 操作,简化了分析过程。

df[ 0 ] = [ 'A' , 'A' , 'B' ]
df
 
1 2 3 4 0
0 - 0.394792 - 0.171866 0.304012 - 0.566659 A
1 0.989046 0.160389 0.482936 1.149435 A
2 0.401105 - 0.492714 - 1.220438 - 0.091609 B
 
g = df.groupby([ 0 ])
 
g.size()
 
A 2
B 1
 
g. sum ()
 
1 2 3 4
0
A 0.594254 - 0.011478 0.786948 0.582776
B 0.401105 - 0.492714 - 1.220438 - 0.091609

5. 导出到csv文件

dataframe可以使用to_csv方法方便地导出到csv文件中,如果数据中含有中文,一般encoding指定为”utf-8″,否则导出时程序会因为不能识别相应的字符串而抛出异常,index指定为False表示不用导出dataframe的index数据。

df.to_csv(file_path, encoding='utf-8', index=False)
df.to_csv(file_path, index=False)

总结

到此这篇关于Pandas中DataFrame操作的文章就介绍到这了,更多相关Pandas DataFrame操作内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Pandas中DataFrame常用操作指南

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Pandas中DataFrame的常用用法分享

Pandas是Python中最流行的数据分析和处理工具之一,它提供了一个名为DataFrame的数据结构,可以被认为是一个二维表格或电子表格。本文主要来和大家分享一下Pandas中DataFrame的常用用法,希望对大家有所帮助
2023-05-16

R语言的Dataframe常用操作方法

这篇文章主要讲解了“R语言的Dataframe常用操作方法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“R语言的Dataframe常用操作方法”吧!上节我们简单介绍了Dataframe的定义
2023-06-20

Python中json库的操作指南

JSON是存储和交换文本信息的语法,类似XML,JSON比XML更小、更快,更易解析,且易于人阅读和编写,下面这篇文章主要给大家介绍了关于Python中json库的操作指南,需要的朋友可以参考下
2023-05-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录