我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python实现一维插值方法的示例代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python实现一维插值方法的示例代码

插值主要用于物理学数学中,逼近某一确定值的方法

(1)插值是通过已知的离散数据求未知数据的方法。

(2)与拟合不同,插值要求曲线通过所有的已知数据。插值是离散函数逼近的重要方法,利用它可以通过函数在有限个点处的取值情况,估算出函数在其他点处的近似值。

(3)若函数 f(x),在自变量x(离散值)所对应的函数已知,求解出一个适当的特定函数 p(x) 使得 p(x) 在x处所取的函数值等于 f(x) 在x处的已知值。从而用 p(x) 来估计 f(x) 在这些x值之间的数所对应的函数值。

'''
scipy.interpolate.interp1d()  一维插值方法
参数
# ---------------------------------------------------------- #
x      数组或列表类型,已知点的x坐标
y      数组或列表类型,已知点的y坐标
kind   差值类型。zero, nearest  阶梯插值, 0阶B样条曲线
                slinear, linear  默认线性插值, 用一条直线连接各个取样点, 1阶B样条曲线
                quadratic, cubic  二阶,三阶 曲线采样,更高阶的可以直接用整数值定
axis   指定沿y的某个轴进行插值,默认沿y的最后一个轴插值
# ---------------------------------------------------------- #
'''

案例一:线性插值

x 坐标为[0,1,2,...,9],坐标y的计算公式为: ,插值方法是要通过已知的10个点,找到能够完美经过这10个点的函数表达式 f,得到表达式后输入新的x坐标点,就能得到对应的新的y坐标点

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
 
# 创建已知点的(x,y)坐标
x = np.arange(0, 10)
y = np.exp(-x/3.0)
# 绘制离散点
# plt.plot(x, y, 'o')
 
# 插值方法就是找到一个函数完全经过这些点,从而预测其他相关的信息
# 创建插值函数, 传入已知点的坐标, 使用线性插值
f = interp1d(x, y, kind='linear', axis=-1)  # 创建的结果是一个函数表达式
 
# 传入新的点的x坐标,预测出y坐标
x_new = np.arange(0, 9, 0.2)
# 生成预测点
y_new = f(x_new)  
 
# 对比旧点和新点的坐标
plt.plot(x, y, 'o', x_new, y_new, '*')
plt.show()

可以看到,插值后的新的坐标点能够经过旧的坐标点。

案例二:案例应用

问:

在一次实验中,在1到12的11个小时内,每隔1小时测量一次温度,测得的温度依次是:5、8、9、15、25、29、31、30、22、25、27、24。尝试估计每隔1/10小时的温度值。

答:

需要根据12小时的测量结果,插值计算出每0.1小时的测量结果。和上面一样,找到一个函数能够完美经过这12个坐标点,使用这个函数预测新的坐标。

下面使用两种差值类型,线性插值和二阶曲线插值,线性插值是在每两个坐标点之间用直线段相连,而二阶曲线插值是在每两个坐标点之间使用二次曲线相连。

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
 
# x为时间序列, y为每个小时的测量温度
x = np.arange(1, 13)
y = [5, 8, 9, 15, 25, 29, 31, 30, 22, 25, 27, 24]
 
# 插值求得包含所有坐标点的函数表达式, 使用二阶插值
f1 = interp1d(x, y, kind='quadratic', axis=-1)
# 使用线性插值
f2 = interp1d(x, y, kind='linear', axis=-1)
 
# 生成新的时间序列点
x_new = np.arange(1, 12, 0.1)
 
# 二阶插值计算每个时间点对应的新的测量结果
y_new1 = f1(x_new)
# 二阶插值计算测量结果
y_new2 = f2(x_new)
 
# 对比两种插值方法的坐标
plt.figure(figsize=(10,5))
plt.subplot(121)
plt.title('quadratic')
plt.plot(x, y, 'o', x_new, y_new1, '*')
 
plt.subplot(122)
plt.title('linear')
plt.plot(x, y, 'o', x_new, y_new2, '*')
plt.show()

可以看出二阶插值方法比线性插值更加平滑,符合设计要求。

以上就是Python实现一维插值方法的示例代码的详细内容,更多关于Python一维插值方法的资料请关注编程网其它相关文章

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python实现一维插值方法的示例代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python中实现插值法的示例详解

这篇文章详细阐述了Python中插值法,一种用于估计未知函数值的技术。它介绍了线性插值,并提供了使用NumPy的Python代码示例。文章还讨论了其他插值方法、插值法的应用以及其限制。通过理解插值法及其适用范围,读者可以利用它在数据分析、图像处理和科学计算等领域获得准确的预测。
Python中实现插值法的示例详解
2024-04-02

python实现线性插值的示例

线性插值是针对一维数据的插值方法,它根据一维数据序列中需要插值的点的左右临近两个数据来进行数值估计,这篇文章主要介绍了python实现线性插值,需要的朋友可以参考下
2022-12-08

python缺失值填充方法示例代码

常见的数据缺失填充方式分为很多种,比如删除法、均值法、回归法、KNN、MICE、EM等,下面这篇文章主要给大家介绍了关于python缺失值填充方法的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
2022-12-23

Python实现拉格朗日插值法的示例详解

插值法是一种数学方法,用于在已知数据点(离散数据)之间插入数据,以生成连续的函数曲线,而格朗日插值法是一种多项式插值法。本文就来用Python实现拉格朗日插值法,希望对大家有所帮助
2023-02-08

python实现黄金分割法的示例代码

一.问题使用黄金分割法来计算 二.代码#黄金分割法python求解PPT上第一个例题 #因为函数要求解最大值而这个方法一般求解最小值所以把函数取负import numpy as np import matplotlib.pyplot as
2022-06-02

SpringBoot和Vue实现动态二维码的示例代码

本文详细介绍了如何使用SpringBoot和Vue实现动态二维码。通过使用SpringBoot作为后端和Vue作为前端,可以生成可存储动态更新数据的二维码。文章提供了详细的代码示例,包括依赖项配置、实体类、服务类、控制器、Vue模板和脚本。通过遵循这些步骤,开发者可以轻松创建和显示不断更新的二维码。
SpringBoot和Vue实现动态二维码的示例代码
2024-04-02

K均值聚类算法的Java版实现代码示例

1.简介K均值聚类算法是先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。一旦全部对象都被分配了,每个聚类的聚类中心会根据聚
2023-05-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录