我的编程空间,编程开发者的网络收藏夹
学习永远不晚

数据处理与分析的六大 Python 库

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

数据处理与分析的六大 Python 库

CleverCSV

CleverCSV是一个有用的Python库,用于处理CSV文件。它可以智能解析、修复错误和清理数据。它解决了常见的CSV文件问题。以下是一个简单的示例,展示如何使用CleverCSV修复CSV文件中的错误。

import clevercsv

with open('data.csv', 'r') as f:
    dialect = clevercsv.Sniffer().sniff(f.read())
    f.seek(0)
    reader = clevercsv.reader(f, dialect)
    for row in reader:
        print(row)

data = [
    ['Name', 'Age', 'City'],
    ['Alice', '25', 'New York'],
    ['Bob', '30', 'San Francisco']
]

with open('output.csv', 'w', newline='') as f:
    writer = clevercsv.writer(f)
    writer.writerows(data)

SciencePlots

SciencePlots GitHub链接

SciencePlots是一个用于制作科学图表的Python工具。学术期刊通常有精美的图表。你可能想知道如何制作这样漂亮的图表。这难吗?许多Python绘图工具只关注数据,而不是风格。

SciencePlots填补了这一空白。它专为学术论文图表制作,就像科学和IEEE期刊中的图表一样。

Drawdata

Drawdata GitHub链接

Drawdata是一个在Jupyter Notebook中绘制数据集的Python库。它帮助你轻松地查看你的数据。这在机器学习中非常有用。使用Drawdata,你可以在Jupyter Notebook中制作不同的图表。这有助于你探索数据,进行预处理、特征选择和模型评估。

KnockKnock

KnockKnock是一个方便的Python库。它会告诉你何时训练完成或者如果它崩溃了。使用几行代码就可以轻松设置不同类型的警报。以下是一个简单的示例。

from knockknock import email_sender

# Email configuration settings
email_config = {
    "email_address": "your_email@example.com",
    "password": "your_email_password",
    "smtp_server": "smtp.example.com",
    "smtp_port": 587,
    "to_email": "receiver_email@example.com"
}

@email_sender(**email_config)
def train_model():
    # Code for training the model
    pass

# Call the training function
if __name__ == "__main__":
    train_model()

在这个示例中,我们在train_model函数上使用了一个装饰器。它使用提供的电子邮件设置设置了电子邮件警报。当训练完成或者崩溃时,你将收到一封电子邮件。

Multipledispatch

Multipledispatch是一个Python库,用于方法重载。它允许你根据参数类型选择不同版本的函数。通常,Python函数是根据名称和参数数量来选择的。但是当参数数量相同但类型不同时,这种方法就不起作用了。Multipledispatch解决了这个问题。以下是一个示例。

from multipledispatch import dispatch

@dispatch(int, int)
def add(x, y):
    return x + y

@dispatch(str, str)
def add(x, y):
    return x + y

try:
    print(add(1, 2))     # Output: 3
    print(add("Hello, ", "World!"))     # Output: Hello, World!
except Exception as e:
    print(f"An error occurred: {e}")

在这个示例中,我们定义了两个名为“add”的函数。一个接受两个整数,另一个接受两个字符串。@dispatch装饰器根据参数类型选择正确的函数。

Pampy

Pampy是一个简单但功能强大的Python模式匹配库。它用于模式匹配和重构。在常规编码中,我们经常使用if-elif-else语句来处理不同的情况。Pampy提供了一种更清晰的方式来完成这项工作。以下是一个示例。

from pampy import match, _

def process_data(data):
    result = match(data,
        0, "Zero",
        1, "One",
        int, "Other integer",
        list, "List",
        str, lambda s: f"String: {s}",
        _, "Other"
    )
    return result

# Test the function with different inputs
print(process_data(0))  # Output: Zero
print(process_data(1))  # Output: One
print(process_data(42))  # Output: Other integer
print(process_data([1, 2, 3]))  # Output: List
print(process_data("Hello"))  # Output: String: Hello
print(process_data(True))  # Output: Other

在这个示例中,我们定义了一个process_data函数。它处理不同类型的输入数据。我们使用Pampy的match函数来检查输入数据的模式,并相应地进行处理。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

数据处理与分析的六大 Python 库

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

数据处理与分析的六大 Python 库

本文将介绍六个出色的 Python 库,这些库在不同领域都表现良好。它们对初学者和经验丰富的开发者都很有用。
Python2024-11-29

经验之谈:数据处理与分析的六大 Python 库

本文将介绍六个出色的 Python 库,这些库在不同领域都表现良好。它们对初学者和经验丰富的开发者都很有用。
Python2024-11-29

Python数据分析库 Pandas,数据处理与分析的得力助手!

Pandas是Python中不可或缺的数据分析工具,提供了丰富的数据处理、清洗、分析和可视化功能,使得数据科学家和分析师能够更轻松地探索和理解数据。
PandasPython2024-11-30

C++云数据处理:大数据分析与机器学习

在云计算处理大数据时,c++++ 凭借以下好处成为有力工具:高性能:编译型语言,直接转换为机器代码,实现高效运行。可扩展性:大型社区和丰富库,开发和维护大规模并行应用程序更轻松。灵活性:允许对并行和内存管理进行细粒度控制,优化应用程序性能,
C++云数据处理:大数据分析与机器学习
2024-05-11

Python数据分析库Scipy库,科学计算与数据分析的利器!

Scipy是Python科学计算和数据分析的强大工具,它提供了丰富的数学优化、统计分析、信号处理和插值功能,为科学家、工程师和数据分析师提供了广泛的工具和函数。
ScipyPython2024-11-30

如何使用Python中的数据分析库进行数据处理

如何使用Python中的数据分析库进行数据处理人们越来越重视数据处理和分析的重要性。随着电子设备的不断普及和互联网的发展,我们每天都会产生大量的数据。要从这些海量的数据中提取有用的信息和洞察,就需要使用强大的工具和技术。Python作为一种
2023-10-22

Python与大数据:踏上数据分析的旅程

Python在大数据处理和数据分析领域发挥着重要作用。本文介绍了Python与大数据的关系,并提供了演示代码,帮助您踏上数据分析的探索之旅。
Python与大数据:踏上数据分析的旅程
2024-02-07

python数据处理实例分析

今天小编给大家分享一下python数据处理实例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。一,前言我们现在拿到了一个十
2023-06-30

Linux环境中利用Python脚本进行大数据分析与处理

Linux环境中利用Python脚本进行大数据分析与处理导言:随着大数据时代的到来,数据分析与处理的需求也日益增长。在Linux环境中,利用Python脚本进行大数据分析与处理是一种高效、灵活、可扩展的方式。本文将介绍如何在Linux环境中
2023-10-22

数据分析处理库Pandas——概述

导入Pandas库 创建DataFrame结构 读取.csv文件titanic_train.csv文件:https://files.cnblogs.com/files/gloria-zhang/titanic_train.rar pd.re
2023-01-31

数据分析处理库Pandas——时间

时间戳 向后推的时间戳 备注:五天后的时间。 指定日期和时间 时间的Series结构 按要求显示时间(开始时间,时间间隔,时间个数) 转换为时间格式,并设置时间列为索引列 方法一 方法二 筛选显示 方法一 备注:按日期时间区间显示数据。 方
2023-01-31

MongoDB与大数据处理:构建高性能分布式数据库

本文将介绍一些MongoDB索引优化的指南,帮助用户更好地利用索引来提高查询性能。

数据分析处理库Pandas——数据透视表

数据 按指定的行列值显示 求和 按行求和 按列求和 数据 求平均 备注:按性别计算每个等级船票的平均价格。 备注:每个等级船舱中每种性别获救的平均值,也就是获救的比例。 备注:每种性别未成年人获救的平均值,也就是获救的比例。 求最大值 备注
2023-01-31

大数据处理分析的最好工具

  本篇文章给大家带来的就是关于数据的一些详细解析,本篇文章会教给大家数据的知识点进行分析,希望本篇文章能帮助到你,对你有所收获,希望大家仔细阅读文章。  大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:
大数据处理分析的最好工具
2024-04-18

大数据分析的好处以及如何分析大数据

大数据分析是分析大量数据以发现诸如隐藏模式、相关性、市场趋势和消费者偏好等信息的一个复杂过程,这些信息有助于企业做出更好的决策。

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录