我的编程空间,编程开发者的网络收藏夹
学习永远不晚

数据驱动和人工智能正推动智能工厂崛起

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

数据驱动和人工智能正推动智能工厂崛起

通过将数据与边缘计算、人工智能/机器学习和流分析等强大工具相结合,实时数据正在推动智能工厂的崛起

数据正在彻底改变制造业。 通过将数据与边缘计算、人工智能/机器学习和流分析等强大工具相结合,实时数据可以实现全新的创新水平,从而推动智能工厂的兴起。

2022 年,制造业产品销售总额达到惊人的 2037 亿英镑(2591 亿美元)。 在全球范围内,企业都迫切希望跟上行业内的创新速度,英国承诺向数据创新中心投入 5000 万英镑(636 亿美元),以支持英国制造商加速数字技术的发展。 最终,有远见的企业应优先考虑将运营技术 (OT) 与边缘和人工智能相结合,以实现能够带来显着效益的用例。

释放智能制造的变革

在制造业中,“边缘”是生产环境,摄像机、传感器、机器和装配线在其中生成数据。 使用边缘计算技术,企业可以收集和解释来自这些来源或连接到这些来源的自动化控制系统的数据。 然后使用流数据分析和人工智能对数据进行分析,以实现实时洞察,从而快速决策和立即采取行动。

然而,同样的边缘数据涌入可能会成为转型的障碍。 扩展数据集,包括跨新边缘位置的新数据类型,可能会以其庞大的数量压倒边缘技术,从而形成数据孤岛。 拥有结构良好的边缘基础设施对其成功至关重要。

尽管存在这些问题,制造商和其他工业公司仍在继续在边缘进行创新,根据从边缘数据中获取价值的能力使自己脱颖而出。 如今,这意味着使用人工智能和机器学习来处理海量数据集,并在数据创建和消费时近乎实时地返回见解。

制造业革命:人工智能处于边缘

人工智能可以提高组织的安全性、效率、技能和产品质量。 – 所有这些都将帮助组织在不断变化的环境中保持相关性和竞争力。 人工智能具有影响力和独特的优势是:

减少缺陷:人工智能可以跟踪产品从到达工厂开始的整个过程。 计算机视觉有助于在整个生产周期中加速和自动化正在进行的工作。 可以实时识别、标记缺陷并追溯到各个流程或组件,以便立即修复,而不是在有缺陷的产品完成后才进行修复。

最小故障:人工智能驱动的预测维护系统使用来自传感器和物联网设备的数据来查明维护需求的确切位置。 这节省了技术人员通常用于诊断问题的大量时间,并使组织能够主动预测和预防未来类似的设备故障。 主动保持设备和流程以最佳性能水平正常运行,有助于组织保护员工、避免中断并降低维护成本。

解决知识差距:基于增强现实 (AR) 的人工智能系统允许场外专家虚拟访问工厂,使用 AR 界面直接评估情况并指导或培训现场工人进行补救。 人工智能还可以理解情境背景并加载建议行动的标准流程,每个步骤都在 AR 中清晰展示,允许未经培训的工人在通常需要专家但又无法找到专家的情况下执行复杂的任务。

在边缘创造更多价值

制造边缘的人工智能带来了一些有吸引力的好处,但也带来了一些必须解决的独特挑战。

组织需要建立强大的后端基础设施和咨询服务基础,以充分了解从获取边缘数据到获得所需业务成果的整个过程。

为了进一步简化部署、集成、安全和管理,由制造人工智能构建的配置系统,专家可以利用专为智能制造用例设计的解决方案来加快实现价值的时间。 选择经过工程验证的人工智能解决方案可以帮助企业克服采用障碍——其中之一可能是缺乏现场人工智能专业知识。 验证的设计是经过测试和验证的配置,从一开始就根据特定用例动态地适应需求。 这些集成解决方案经过严格测试和记录,有助于加快和简化部署。

令人信服的结果

当今成功故事背后的用例与制造业子行业一样多种多样,但反复出现的主题正在出现。 其中包括互联工人、整体设备效率、预测性维护、生产质量、产量优化、增强的物流、生产优化和数字孪生——所有这些都是最常见的制造边缘用例。

支持人工智能的边缘计算和数据分析的常见用例包括预测维护、计算机视觉、生产质量和数字孪生。 这些都需要分析大量的多维数据,例如来自连接设备、设备和其他资产的图像、音频和传感器读数。 使互联工作人员能够提高工作效率和安全性的用例依赖于高速和超低延迟连接(例如 Wi-Fi 和电话数据)来提供及时的生产力和安全信息。 其他新兴用例,例如用于维护和培训应用的 AR 和混合现实,将需要 5G 网络的灵活性和成本效益来解决古老的连接和 Wi-Fi 数据吞吐量问题。

在竞争日益激烈和要求日益严格的世界中,这些技术和用例可以帮助制造商在客户需要时为他们提供他们想要的东西:以具有竞争力的价格提供创新、高质量的产品,同时满足严格的盈利能力、可持续性和安全目标。

通过利用边缘人工智能的力量,智能制造商正在实现切实且可衡量的商业利益,并在需要时提供更好、更快的洞察力。 这种智能制造方法使他们能够在竞争激烈的全球市场中脱颖而出并参与竞争。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

数据驱动和人工智能正推动智能工厂崛起

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

数据驱动和人工智能正推动智能工厂崛起

数据正在彻底改变制造业。 通过将数据与边缘计算、人工智能/机器学习和流分析等强大工具相结合,实时数据可以实现全新的创新水平,从而推动智能工厂的兴起。

实时数据推动人工智能“工厂”

数据就是数据,但当它是实时数据时,它的价值就开始成倍增长。一项新的研究表明,利用实时数据的公司收入和增长最多。

人工智能推动数据中心投资

“与传统的数据中心部署不同,人工智能工作负载以更高的功率密度运行,运营商强调其管道内的交易以每个机柜 0-50kW的功率运行,在某些情况下,每个机柜的功率密度高达 +100kW。”

人工智能:工业 4.0 的驱动力

许多围绕人工智能在制造业的炒作都集中在工业自动化上,但这只是智能工厂革命的一个方面——追求效率的自然下一步。人工智能还带来了为制造表揭示新业务途径的能力。

人工智能正在推动数据中心走向边缘

数据中心已成为连接我们数字互联世界的基石。与此同时,人工智能(AI)和机器学习(ML)的快速增长和应用正在影响数据中心的设计和运营。

人工智能和大数据是工业4.0背后的驱动力

大数据和人工智能是由一些技术进步推动的,这些技术进步定义了当前的数字环境和工业4.0。

人工智能在数字营销中的崛起

曾经由人类直觉和人工策略主导的数字营销领域,如今正在被人工智能(AI)和机器学习(ML)彻底改变。这些技术不仅仅是转瞬即逝的趋势,更是根本性的转变,引领了一个超个性化、预测精度和丰富客户旅程的时代。
人工智能2024-11-30

生成式人工智能如何推动智能自动化

生成式人工智能供应生态系统和对未来前景的展望,强调了该技术在重新定义企业效率方面的巨大可能性。随着生成式人工智能和IA继续共生进化,人工智能加速的智能自动化前景有望释放前所未有的价值、创造力和意义,使跨职能的团队能够提高生产力。

人工智能和云工作负载推动数据中心需求

仲量联行的一份新报告显示,人工智能工作负载和云的持续采用,正在推动对数据中心的爆炸性需求,导致托管空间短缺和价格上涨。

人工智能推动技术和数据治理的发展

自 2019 年以来,由政府发起的有关 AI 的倡议在整个亚太地区激增。这些举措包括建立跨域 AI 道德委员会,负责任使用 AI 的指南和框架,以及其他举措,例如财务和技术支持。这些举措大多数都基于该国各自的数据隐私和保护法案。

数据科学和人工智能如何推动智慧城市目标

数据科学和人工智能(DSAI)正在改变数字领域。且随着DSAI能力变得越来越先进,组织需要重新思考其运营,并为自己配备相关的数字敏锐度。

推动自动化的人工智能测试工具

人工智能测试工具的进步可以提高准确性、测试覆盖率、速度,并减轻关键人力资源的负担。

人工智能正在推动物联网的发展

编程学习网:未来的工厂将只有两名员工,一个人和一只狗。人在那里喂狗,而狗是要看住人,不让他碰机器
人工智能正在推动物联网的发展
2024-04-23

人工智能正在推动制造业数字化转型

随着制造业中的人工智能改变了机器健康状况的监控和管理方式,企业将需要机器操作专家来弥补操作和维护之间的差距。

推动智能工厂发展的关键因素

伟创力全球运营及供应链总裁陈光辉,讨论了设备互联、人工智能和智能工厂创新。
人工智能2024-11-28

自动化一代:人工智能驱动的劳动力

生成式人工智能引发了一场人工智能“海啸”,这是一个人工智能驱动应用快速发展、广泛采用和商业化的时代。但当涉及到采用人工智能时,企业需要三思而后行。

数据中心:推动生成式人工智能经济

到2024年,超大规模数据中心的数量将从五年前的500个增加一倍。我们越将生成式人工智能技术融入日常生活,对数据中心的需求就越高。

人工智能驱动内存互连进化

人工智能(AI)、车用芯片的复杂程度逐步递增,边缘处理比重也在增加,存储的选择、设计、使用模式及配置将会面临更大的挑战。因此,为了满足AI和机器学习应用程序的需要,位置(Location)越来越多地应用于数据需要驻留的地方和存储数据的内存。
人工智能2024-12-03

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录