我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Spark SQL(6) OptimizedPlan

短信预约 信息系统项目管理师 报名、考试、查分时间动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Spark SQL(6) OptimizedPlan


	Spark SQL(6) OptimizedPlan
[数据库教程]

在这一步spark sql主要应用一些规则,优化生成的Resolved Plan,这一步涉及到的有Optimizer。

之前介绍在sparksession实例化的是会实例化sessionState,进而确定QueryExecution、Analyzer,Optimizer也是在这一步确定的:

  protected def optimizer: Optimizer = {
    new SparkOptimizer(catalog, experimentalMethods) {
      override def extendedOperatorOptimizationRules: Seq[Rule[LogicalPlan]] =
        super.extendedOperatorOptimizationRules ++ customOperatorOptimizationRules
    }
  }

  Optimizer也是RuleExecutor的子类,而SparkOptimizer是Optimizer子类,在analyzed步骤知道,其实主要规则就是RuleExecutor子类定义的batchs的规则

sparkOptimizer:

 override def batches: Seq[Batch] = (preOptimizationBatches ++ super.batches :+
    Batch("Optimize Metadata Only Query", Once, OptimizeMetadataOnlyQuery(catalog)) :+
    Batch("Extract Python UDF from Aggregate", Once, ExtractPythonUDFFromAggregate) :+
    Batch("Prune File Source Table Partitions", Once, PruneFileSourcePartitions) :+
    Batch("Push down operators to data source scan", Once, PushDownOperatorsToDataSource)) ++
    postHocOptimizationBatches :+
    Batch("User Provided Optimizers", fixedPoint, experimentalMethods.extraOptimizations: _*)

Optimizer:

def batches: Seq[Batch] = {
    val operatorOptimizationRuleSet =
      Seq(
        // Operator push down
        PushProjectionThroughUnion,
        ReorderJoin,
        EliminateOuterJoin,
        PushPredicateThroughJoin,
        PushDownPredicate,
        LimitPushDown,
        ColumnPruning,
        InferFiltersFromConstraints,
        // Operator combine
        CollapseRepartition,
        CollapseProject,
        CollapseWindow,
        CombineFilters,
        CombineLimits,
        CombineUnions,
        // Constant folding and strength reduction
        NullPropagation,
        ConstantPropagation,
        FoldablePropagation,
        OptimizeIn,
        ConstantFolding,
        ReorderAssociativeOperator,
        LikeSimplification,
        BooleanSimplification,
        SimplifyConditionals,
        RemoveDispensableExpressions,
        SimplifyBinaryComparison,
        PruneFilters,
        EliminateSorts,
        SimplifyCasts,
        SimplifyCaseConversionExpressions,
        RewriteCorrelatedScalarSubquery,
        EliminateSerialization,
        RemoveRedundantAliases,
        RemoveRedundantProject,
        SimplifyCreateStructOps,
        SimplifyCreateArrayOps,
        SimplifyCreateMapOps,
        CombineConcats) ++
        extendedOperatorOptimizationRules

    val operatorOptimizationBatch: Seq[Batch] = {
      val rulesWithoutInferFiltersFromConstraints =
        operatorOptimizationRuleSet.filterNot(_ == InferFiltersFromConstraints)
      Batch("Operator Optimization before Inferring Filters", fixedPoint,
        rulesWithoutInferFiltersFromConstraints: _*) ::
      Batch("Infer Filters", Once,
        InferFiltersFromConstraints) ::
      Batch("Operator Optimization after Inferring Filters", fixedPoint,
        rulesWithoutInferFiltersFromConstraints: _*) :: Nil
    }

    (Batch("Eliminate Distinct", Once, EliminateDistinct) ::
    // Technically some of the rules in Finish Analysis are not optimizer rules and belong more
    // in the analyzer, because they are needed for correctness (e.g. ComputeCurrentTime).
    // However, because we also use the analyzer to canonicalized queries (for view definition),
    // we do not eliminate subqueries or compute current time in the analyzer.
    Batch("Finish Analysis", Once,
      EliminateSubqueryAliases,
      EliminateView,
      ReplaceExpressions,
      ComputeCurrentTime,
      GetCurrentDatabase(sessionCatalog),
      RewriteDistinctAggregates,
      ReplaceDeduplicateWithAggregate) ::
    //////////////////////////////////////////////////////////////////////////////////////////
    // Optimizer rules start here
    //////////////////////////////////////////////////////////////////////////////////////////
    // - Do the first call of CombineUnions before starting the major Optimizer rules,
    //   since it can reduce the number of iteration and the other rules could add/move
    //   extra operators between two adjacent Union operators.
    // - Call CombineUnions again in Batch("Operator Optimizations"),
    //   since the other rules might make two separate Unions operators adjacent.
    Batch("Union", Once,
      CombineUnions) ::
    Batch("Pullup Correlated Expressions", Once,
      PullupCorrelatedPredicates) ::
    Batch("Subquery", Once,
      OptimizeSubqueries) ::
    Batch("Replace Operators", fixedPoint,
      ReplaceIntersectWithSemiJoin,
      ReplaceExceptWithFilter,
      ReplaceExceptWithAntiJoin,
      ReplaceDistinctWithAggregate) ::
    Batch("Aggregate", fixedPoint,
      RemoveLiteralFromGroupExpressions,
      RemoveRepetitionFromGroupExpressions) :: Nil ++
    operatorOptimizationBatch) :+
    Batch("Join Reorder", Once,
      CostBasedJoinReorder) :+
    Batch("Decimal Optimizations", fixedPoint,
      DecimalAggregates) :+
    Batch("Object Expressions Optimization", fixedPoint,
      EliminateMapObjects,
      CombineTypedFilters) :+
    Batch("LocalRelation", fixedPoint,
      ConvertToLocalRelation,
      PropagateEmptyRelation) :+
    // The following batch should be executed after batch "Join Reorder" and "LocalRelation".
    Batch("Check Cartesian Products", Once,
      CheckCartesianProducts) :+
    Batch("RewriteSubquery", Once,
      RewritePredicateSubquery,
      ColumnPruning,
      CollapseProject,
      RemoveRedundantProject)
  }

  如上这便是在优化这步的所有的规则和策略例如消除子查询别名,表达式替换、算子下推、常量折叠等优化规则,经过这一步之后,就进入物理计划阶段了。

Spark SQL(6) OptimizedPlan

原文地址:https://www.cnblogs.com/ldsggv/p/13380953.html

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Spark SQL(6) OptimizedPlan

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Spark SQL(6) OptimizedPlan

Spark SQL(6) OptimizedPlan在这一步spark sql主要应用一些规则,优化生成的Resolved Plan,这一步涉及到的有Optimizer。之前介绍在sparksession实例化的是会实例化sessionState,进而确定Qu
Spark SQL(6) OptimizedPlan
2018-05-05

【梦溪笔谈】6.spark-sql相关代码

原文:https://www.cnblogs.com/siriJR/p/13963536.html
【梦溪笔谈】6.spark-sql相关代码
2017-04-11

理解Spark SQL(三)—— Spark SQL程序举例

上一篇说到,在Spark 2.x当中,实际上SQLContext和HiveContext是过时的,相反是采用SparkSession对象的sql函数来操作SQL语句的。使用这个函数执行SQL语句前需要先调用DataFrame的createOrReplaceTe
理解Spark SQL(三)—— Spark SQL程序举例
2020-09-04

「Spark」Spark SQL Thrift Server运行方式

Spark SQL可以使用JDBC/ODBC或命令行接口充当分布式查询引擎。这种模式,用户或者应用程序可以直接与Spark SQL交互,以运行SQL查询,无需编写任何代码。Spark SQL提供两种方式来运行SQL:通过运行Thrift Server直接执行S
「Spark」Spark SQL Thrift Server运行方式
2021-02-24

大数据Hadoop之——Spark SQL+Spark Streaming

目录一、Spark SQL概述二、SparkSQL版本1)SparkSQL的演变之路2)shark与SparkSQL对比3)SparkSession三、RDD、DataFrames和DataSet1)三者关联关系1)RDD1、核心概念2、RDD简单操作3、RD
大数据Hadoop之——Spark SQL+Spark Streaming
2019-06-08

spark-sql-04-on_hive

设置metastore机器: ke01、ke02、ke03、ke04ke03 为元数据库ke01、ke02、ke04 连接到元数据库 、hive-metastore搭建ke03: hive.metastore.warehouse.dir

	spark-sql-04-on_hive
2016-05-07

Spark SQL怎么用

这篇文章主要介绍“Spark SQL怎么用”,在日常操作中,相信很多人在Spark SQL怎么用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Spark SQL怎么用”的疑惑有所帮助!接下来,请跟着小编一起来
2023-06-03

Spark SQL外部数据源的机制以及spark-sql的使用

这篇文章主要介绍“Spark SQL外部数据源的机制以及spark-sql的使用”,在日常操作中,相信很多人在Spark SQL外部数据源的机制以及spark-sql的使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对
2023-06-02

springboot集成spark并使用spark-sql的方法

这篇文章主要介绍“springboot集成spark并使用spark-sql的方法”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“springboot集成spark并使用spark-sql的方法”文章
2023-06-29

一条Sql的Spark之旅

背景​ SQL作为一门标准的、通用的、简单的DSL,在大数据分析中有着越来越重要的地位;Spark在批处理引擎领域当前也是处于绝对的地位,而Spark2.0中的SparkSQL也支持ANSI-SQL 2003标准。因此SparkSQL在大数据分析中的地位不言而
一条Sql的Spark之旅
2021-03-10

Spark-Sql的示例分析

这篇文章主要介绍Spark-Sql的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!SparkSQL运行架构Spark SQL对SQL语句的处理,首先会将SQL语句进行解析(Parse),然后形成一个Tree,
2023-06-21

Spark Streaming+Spark SQL的数据倾斜示例分析

这篇文章将为大家详细讲解有关Spark Streaming+Spark SQL的数据倾斜示例分析,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。1.现象 三台机器都有产生executor,每台
2023-06-03

理解Spark SQL(二)—— SQLContext和HiveContext

使用Spark SQL,除了使用之前介绍的方法,实际上还可以使用SQLContext或者HiveContext通过编程的方式实现。前者支持SQL语法解析器(SQL-92语法),后者支持SQL语法解析器和HiveSQL语法解析器,默认为HiveSQL语法解析器,
2017-07-25

理解Spark SQL(一)—— CLI和ThriftServer

Spark SQL主要提供了两个工具来访问hive中的数据,即CLI和ThriftServer。前提是需要Spark支持Hive,即编译Spark时需要带上hive和hive-thriftserver选项,同时需要确保在$SPARK_HOME/conf目录下有
理解Spark SQL(一)—— CLI和ThriftServer
2017-01-02

Spark SQL中怎么创建DataFrames

本篇内容主要讲解“Spark SQL中怎么创建DataFrames”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Spark SQL中怎么创建DataFrames”吧!一、Spark SQL简介S
2023-06-01

Spark SQL的用途有哪些

Spark SQL是一个用于在Spark平台上进行结构化数据处理的模块,它具有以下用途:查询和分析结构化数据:Spark SQL允许用户使用SQL语句和DataFrame API来查询和分析结构化数据,将数据转换为数据框架,进行数据操作和转
Spark SQL的用途有哪些
2024-04-09

spark sql/hive小文件问题

针对hive on mapreduce1:我们可以通过一些配置项来使Hive在执行结束后对结果文件进行合并:参数详细内容可参考官网:https://cwiki.apache.org/confluence/display/Hive/Configuration+P
spark sql/hive小文件问题
2020-09-25

Spark SQL小文件问题处理

目录1.1、小文件危害1.2、产生小文件过多的原因1.3、如何解决这种小文件的问题呢?1.3.1、调优参数1.1、小文件危害大量的小文件会影响Hadoop集群管理或者Spark在处理数据时的稳定性:1.Spark SQL写Hive或者直
2023-04-07

编程热搜

目录