Python DPED机器学习怎么实现照片美化
这篇文章主要介绍“Python DPED机器学习怎么实现照片美化”,在日常操作中,相信很多人在Python DPED机器学习怎么实现照片美化问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python DPED机器学习怎么实现照片美化”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
环境部署
项目结构
下面是项目的原始结构:
tensorflow安装
按照项目的说明,我们需要安装tensorflow以及一些必要的库。
如果安装gpu版本的tensorflow需要对照一下
tensorflow官方对照地址:TensorFlow官方CUDA版本对照
我的cuda是11.1的版本,按照tensorflow后还是缺少部分dll,如果有相同问题的,可以用我提供的资源包 提取码:TUAN。
缺少哪个dll,直接复制到你的NVIDIA GPU Computing Toolkit目录对应cuda的bin目录下。
按照自己的版本来,我的tensorflow命令如下:
pip install tensorflow-gpu==2.4.2 -i https://pypi.douban.com/simplepip install tf-nightly -i https://pypi.douban.com/simple
其他依赖安装
Pillow, scipy, numpy, imageio安装
pip install Pillow -i https://pypi.douban.com/simplepip install scipy -i https://pypi.douban.com/simplepip install numpy -i https://pypi.douban.com/simplepip install imageio -i https://pypi.douban.com/simple
VGG-19下载
因为模型文件太大,github的项目中无法上传这么大的文件,作者让我们自己下。
我把DPED的资源包统一打包了,也可以从我的云盘下载, 放到项目的vgg_pretrained目录下。下图是资源包的目录
资源包地址 提取码:TUAN。
项目运行
项目需要的环境我们都装好了,我们跳过训练的部分,测试model的方法官方给出了命令。
准备图片素材
我准备了几张图,就不全展示了,展示其中的一张。
按照项目的要求,需要放在对应的目录下。
测试效果
执行命令
python test_model.py model=iphone_orig test_subset=full resolution=orig use_gpu=true
执行过程
(tensorflow) C:\Users\yi\PycharmProjects\DPED>python test_model.py model=iphone_orig test_subset=full resolution=orig use_gpu=true2021-11-27 23:42:57.922965: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll2021-11-27 23:43:00.532645: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) touse the following CPU instructions in performance-critical operations: AVX2To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.2021-11-27 23:43:00.535946: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library nvcuda.dll2021-11-27 23:43:00.559967: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:pciBusID: 0000:01:00.0 name: GeForce GTX 1070 computeCapability: 6.1coreClock: 1.759GHz coreCount: 15 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 238.66GiB/s2021-11-27 23:43:00.560121: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll2021-11-27 23:43:00.577706: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll2021-11-27 23:43:00.577812: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll2021-11-27 23:43:00.588560: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll2021-11-27 23:43:00.591950: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll2021-11-27 23:43:00.614412: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusolver64_10.dll2021-11-27 23:43:00.624267: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll2021-11-27 23:43:00.626309: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll2021-11-27 23:43:00.626481: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 02021-11-27 23:43:01.112598: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix:2021-11-27 23:43:01.112756: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267] 02021-11-27 23:43:01.113098: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0: N2021-11-27 23:43:01.113463: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6720 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)2021-11-27 23:43:01.114296: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not setWARNING:tensorflow:From C:\Users\yi\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\compat\v2_compat.py:96: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version.Instructions for updating:non-resource variables are not supported in the long term2021-11-27 23:43:01.478512: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set2021-11-27 23:43:01.479339: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:pciBusID: 0000:01:00.0 name: GeForce GTX 1070 computeCapability: 6.1coreClock: 1.759GHz coreCount: 15 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 238.66GiB/s2021-11-27 23:43:01.479747: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll2021-11-27 23:43:01.480519: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll2021-11-27 23:43:01.480927: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll2021-11-27 23:43:01.481155: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll2021-11-27 23:43:01.481568: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll2021-11-27 23:43:01.481823: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusolver64_10.dll2021-11-27 23:43:01.482188: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll2021-11-27 23:43:01.482416: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll2021-11-27 23:43:01.482638: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 02021-11-27 23:43:01.482959: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:pciBusID: 0000:01:00.0 name: GeForce GTX 1070 computeCapability: 6.1coreClock: 1.759GHz coreCount: 15 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 238.66GiB/s2021-11-27 23:43:01.483077: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll2021-11-27 23:43:01.483254: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll2021-11-27 23:43:01.483426: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll2021-11-27 23:43:01.483638: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll2021-11-27 23:43:01.483817: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll2021-11-27 23:43:01.484052: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusolver64_10.dll2021-11-27 23:43:01.484250: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll2021-11-27 23:43:01.484433: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll2021-11-27 23:43:01.484662: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 02021-11-27 23:43:01.484841: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix:2021-11-27 23:43:01.484984: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267] 02021-11-27 23:43:01.485152: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0: N2021-11-27 23:43:01.485395: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6720 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)2021-11-27 23:43:01.485565: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set2021-11-27 23:43:01.518135: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:196] None of the MLIR optimization passes are enabled (registered 0 passes)Testing original iphone model, processing image 3.jpg2021-11-27 23:43:01.863678: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll2021-11-27 23:43:02.517063: I tensorflow/core/platform/windows/subprocess.cc:308] SubProcess ended with return code: 0 2021-11-27 23:43:02.632790: I tensorflow/core/platform/windows/subprocess.cc:308] SubProcess ended with return code: 0 2021-11-27 23:43:03.210892: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll2021-11-27 23:43:03.509052: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dllLossy conversion from float32 to uint8. Range [-0.06221151351928711, 1.0705437660217285]. Convert image to uint8 prior to saving to suppress this warning.Lossy conversion from float32 to uint8. Range [-0.06221151351928711, 1.0705437660217285]. Convert image to uint8 prior to saving to suppress this warning.Testing original iphone model, processing image 4.jpgLossy conversion from float32 to uint8. Range [-0.05176264047622681, 1.0500218868255615]. Convert image to uint8 prior to saving to suppress this warning.Lossy conversion from float32 to uint8. Range [-0.05176264047622681, 1.0500218868255615]. Convert image to uint8 prior to saving to suppress this warning.Testing original iphone model, processing image 5.jpgLossy conversion from float32 to uint8. Range [-0.03344374895095825, 1.0417983531951904]. Convert image to uint8 prior to saving to suppress this warning.Lossy conversion from float32 to uint8. Range [-0.03344374895095825, 1.0417983531951904]. Convert image to uint8 prior to saving to suppress this warning.Testing original iphone model, processing image 6.jpgLossy conversion from float32 to uint8. Range [-0.03614246845245361, 1.063475251197815]. Convert image to uint8 prior to saving to suppress this warning.Lossy conversion from float32 to uint8. Range [-0.03614246845245361, 1.063475251197815]. Convert image to uint8 prior to saving to suppress this warning.
项目会生成前后对比图以及最终结果图。
前后效果图,左边为原始图,右边为对比图。
结果图如下
可以明显的看出,新图已经明亮了许多,色彩也变的比较鲜明了,效果还是很不错的。
到此,关于“Python DPED机器学习怎么实现照片美化”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注编程网网站,小编会继续努力为大家带来更多实用的文章!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341