怎么在R语言中实现一个t分布正态分布分位数图
短信预约 -IT技能 免费直播动态提醒
怎么在R语言中实现一个t分布正态分布分位数图?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
如何用RStudio做分位数图呢?
#分位数图,画t分布密度带p值x=seq(-6,6,length=1000);y=dt(x,19)r1=-6;r2=-2.89;x2=c(r1,r1,x[x<r2&x>r1],r2,r2)y2=c(0,dt(c(r1,x[x<r2&x>r1],r2),19),0)plot(x,y,type="l",ylab="Density oft(19)",xlim=c(-5,5))abline(h=0);polygon(x2,y2,col="red")title("Tail Probability for t(19)")text(c(-4.1,-2,5),c(0.02,-0.07),c("p-value=0.0047","t=-2.89"))#对称#x=seq(-6,6,length=1000);y=dt(x,19)r1=6;r2=2.89;x2=c(r1,r1,x[x<r2&x>r1],r2,r2)y2=c(0,dt(c(r1,x[x<r2&x>r1],r2),19),0)plot(x,y,type="l",ylab="Density oft(19)",xlim=c(-5,5))abline(h=0);polygon(x2,y2,col="red")title("Tail Probability for t(19)")text(c(-4.1,-2,5),c(0.02,-0.07),c("p-value=0.0047","t=-2.89")) #两边#x=seq(-6,6,length=1000);y=dt(x,19)r1=-6;r2=-2.89;r3=2.89;r4=6;x2=c(r1,r1,x[x<r2&x>r1],r2,r2)y2=c(0,dt(c(r1,x[x<r2&x>r1],r2),19),0)x3=c(r3,r3,x[x<r4&x>r3],r4,r4)y3=c(0,dt(c(r3,x[x<r4&x>r3],r4),19),0)plot(x,y,type="l",ylab="Density oft(19)",xlim=c(-5,5))abline(h=0);polygon(c(x2,x3),c(y2,y3),col="red");title("Tail Probability for t(19)")text(c(-4.1,-2.5),c(0.02,-0.007),c("p-value=0.0047","t=-2.89"))text(c(2.5,4.1),c(0.02,-0.007),c("p-value=0.9953","t=2.89"))#正态分布x=seq(-5,5,0.01) #得到步长0.01的x范围plot(x,dnorm(x),type="l",xlim=c(-5,5),ylim=c(0,2),main="The Normal Density Distribution") #画curve(dnorm(x,1,0.5),add=T,lty=2,col="blue")lines(x,dnorm(x,0,0.25),col="green")lines(x,dnorm(x,-2,0.5),col="orange")legend("topright",legend=paste("m=",c(0,1,0,-2),"sd=", #m:均值 sd:方差c(1,0.5,0.25,0.5)),lwd=3,lty=c(1,2,1,1),col=c("black","blue","green","red"))#分布函数set.seed(1)X<-seq(-5,5,length.out=100)y<-pnorm(x,0,1)plot(x,y,col="red",xlim=c(-5,5),ylim=c(0,1),type="l", xaxs="i",yaxs="i",ylab='density',xlab='', main="The Normal Cumulative Distribution")lines(x,pnorm(x,0,0.5),col="green")lines(x,pnorm(x,0,2),col="blue")lines(x,pnorm(x,-2,1),col="orange")legend("bottomright",legend=paste("m=",c(0,0,0,-2),"sd=",c(1,0.5,2,1)),lwd=1,col=c("red","green","blue","orange"))
得到的图形结果如下:
补充:R语言绘制不同自由度下的卡方分布、t分布和F分布
看代码吧~
# === chi-squared distribution ===chif <- function(x, df) { dchisq(x, df = df)}## === chi-squared distribution with df=1,2, 4, 6 and 10 ===curve(chif(x, df = 1), 0, 20, ylab = "p(x)", lwd = 2)curve(chif(x, df = 2), 0, 20, col = 2, add = T, lty = 2, lwd = 2)curve(chif(x, df = 4), 0, 20, col = 3, add = T, lty = 3, lwd = 2)curve(chif(x, df = 6), 0, 20, col = 4, add = T, lty = 4, lwd = 2)curve(chif(x, df = 10), 0, 20, col = 5, add = T, lty = 5, lwd = 2)legend("topright", legend = c("df=1", "df=2", "df=4", "df=6", "df=10"), col = 1:5, lty = 1:5, lwd = 2)## === chi-squared distribution with df=4,6 and 10 ===curve(dchisq(x, 4), 0, 20, col = 3, lty = 3, lwd = 2, ylab = "p(x)")curve(dchisq(x, 6), 0, 20, col = 4, add = T, lty = 4, lwd = 2)curve(dchisq(x, 10), 0, 20, col = 5, add = T, lty = 5, lwd = 2)legend("topright", legend = c("df=4", "df=6", "df=10"), col = 3:5, lty = 3:5, lwd = 2)### quantilescurve(dchisq(x, 10), 0, 30, col = 1, lty = 1, lwd = 2, ylab = "p(x) of chisq(10)")lines(c(qchisq(0.95, 10), qchisq(0.95, 10)), c(-0.05, dchisq(qchisq(0.95, 10), 10)), col = 2, lwd = 3, lty = 2)qchisq(0.95,10)## ==== t ===curve(dt(x, 1), -6, 6, ylab = "p(x)", lwd = 2, ylim = c(0, 0.4))curve(dt(x, 2), -6, 6, col = 2, add = T, lwd = 2)curve(dt(x, 5), -6, 6, col = 3, add = T, lwd = 2)curve(dt(x, 10), -6, 6, col = 4, add = T, lwd = 2)curve(dnorm(x), col = 6, add = T, lwd = 2, lty = 2)legend("topright", legend = c("df=1", "df=2", "df=5", "df=10", "df=Inf"), col = c(1:4, 6), lty = c(rep(1, 4), 2), lwd = 2)curve(dt(x, 4), -6, 6, col = 4, lwd = 2, ylim = c(0, 0.4), ylab = "p(x)")curve(dnorm(x), col = 6, add = T, lwd = 2, lty = 2)legend("topright", legend = c("t(4)", "N(0,1)"), col = c(4, 6), lty = c(1, 2), lwd = 2)qt(0.025,10)qt(0.975,10)## === F ==curve(df(x, 4, 1), 0, 4, ylab = "p(x)", lwd = 2, ylim = c(0, 0.8))curve(df(x, 4, 4), 0, 4, col = 2, add = T, lwd = 2)curve(df(x, 4, 10), 0, 4, col = 3, add = T, lwd = 2)curve(df(x, 4, 4000), 0, 4, col = 4, add = T, lwd = 2)legend("topright", legend = c("F(4,1)", "F(4,4)", "F(4,10)", "F(4,4000)"), col = 1:4, lwd = 2)qf(0.95,10,5)qf(0.05,5,10)1/qf(0.05,5,10)
卡方分布
t分布
F分布
#卡方分布> qchisq(0.95,5)[1] 11.0705> qchisq(0.95,10)[1] 18.30704> qchisq(0.95,15)[1] 24.99579> qchisq(0.95,20)[1] 31.41043> qchisq(0.95,25)[1] 37.65248> qchisq(0.95,30)[1] 43.77297
#t分布> qt(0.95,5)[1] 2.015048> qt(0.95,10)[1] 1.812461> qt(0.95,15)[1] 1.75305> qt(0.95,20)[1] 1.724718> qt(0.95,25)[1] 1.708141> qt(0.95,30)[1] 1.697261
> qf(0.95,10,5)[1] 4.735063> qf(0.95,5,10)[1] 3.325835> qf(0.95,5,5)[1] 5.050329> qf(0.95,10,10)[1] 2.978237
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注编程网行业资讯频道,感谢您对编程网的支持。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341