Python实现softmax反向传播的示例代码
短信预约 -IT技能 免费直播动态提醒
概念
softmax函数是常用的输出层函数,常用来解决互斥标签的多分类问题。当然由于他是非线性函数,也可以作为隐藏层函数使用
反向传播求导
可以看到,softmax 计算了多个神经元的输入,在反向传播求导时,需要考虑对不同神经元的参数求导。
分两种情况考虑:
- 当求导的参数位于分子时
- 当求导的参数位于分母时
当求导的参数位于分子时:
当求导的参数位于分母时(ez2 or ez3这两个是对称的,求导结果是一样的):
代码
import torch
import math
def my_softmax(features):
_sum = 0
for i in features:
_sum += math.e ** i
return torch.Tensor([ math.e ** i / _sum for i in features ])
def my_softmax_grad(outputs):
n = len(outputs)
grad = []
for i in range(n):
temp = []
for j in range(n):
if i == j:
temp.append(outputs[i] * (1- outputs[i]))
else:
temp.append(-outputs[j] * outputs[i])
grad.append(torch.Tensor(temp))
return grad
if __name__ == '__main__':
features = torch.randn(10)
features.requires_grad_()
torch_softmax = torch.nn.functional.softmax
p1 = torch_softmax(features,dim=0)
p2 = my_softmax(features)
print(torch.allclose(p1,p2))
n = len(p1)
p2_grad = my_softmax_grad(p2)
for i in range(n):
p1_grad = torch.autograd.grad(p1[i],features, retain_graph=True)
print(torch.allclose(p1_grad[0], p2_grad[i]))
到此这篇关于Python实现softmax反向传播的示例代码的文章就介绍到这了,更多相关Python softmax 反向传播内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341