我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python实战之手势识别控制电脑音量

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python实战之手势识别控制电脑音量

今天给大家带来一个OpenCV的实战小项目——手势识别控制电脑音量

先上个效果图:

通过大拇指和食指间的开合距离来调节电脑音量,即通过识别大拇指与食指这两个关键点之间的距离来控制电脑音量大小

一、环境配置

这个项目需要的环境比较简单,主要就是opencv和mediapipe库

import cv2
import mediapipe as mp
from ctypes import cast, POINTER
from comtypes import CLSCTX_ALL
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume
import pyautogui

缺库的话直接:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple  库名称

二、代码介绍

1)初始化mediapipe库

self.mp_drawing = mp.solutions.drawing_utils
self.mp_drawing_styles = mp.solutions.drawing_styles
self.mp_hands = mp.solutions.hands

2)获取电脑音量范围

devices = AudioUtilities.GetSpeakers()
interface = devices.Activate(IAudioEndpointVolume._iid_, CLSCTX_ALL, None)
self.volume = cast(interface, POINTER(IAudioEndpointVolume))
self.volume.SetMute(0, None)
self.volume_range = self.volume.GetVolumeRange()

3)利用OpenCV读取摄像头视频流进行显示

cap = cv2.VideoCapture(0)
resize_w = 640
resize_h = 480
while cap.isOpened():
    success, image = cap.read()
    image = cv2.resize(image, (resize_w, resize_h))

4)识别手掌,获取手掌关键点坐标

# 判断是否有手掌
if results.multi_hand_landmarks:
    # 遍历每个手掌
    for hand_landmarks in results.multi_hand_landmarks:
        # 在画面标注手指
        # 解析手指,存入各个手指坐标
        landmark_list = []
        for landmark_id, finger_axis in enumerate(
                hand_landmarks.landmark):
            landmark_list.append([
                landmark_id, finger_axis.x, finger_axis.y,
                finger_axis.z
            ])
        if landmark_list:
            # 获取大拇指指尖坐标
            thumb_finger_tip = landmark_list[4]
            thumb_finger_tip_x = math.ceil(thumb_finger_tip[1] * resize_w)
            thumb_finger_tip_y = math.ceil(thumb_finger_tip[2] * resize_h)
            # 获取食指指尖坐标
            index_finger_tip = landmark_list[8]
            index_finger_tip_x = math.ceil(index_finger_tip[1] * resize_w)
            index_finger_tip_y = math.ceil(index_finger_tip[2] * resize_h)
            # 获取中指尖坐标
            middle_finger_tip = landmark_list[12]
            middle_finger_tip_x = math.ceil(middle_finger_tip[1] * resize_w)
            middle_finger_tip_y = math.ceil(middle_finger_tip[2] * resize_h)
            # 中指与食指中间点
            middle_index_finger_middle_point = (middle_finger_tip_x + index_finger_tip_x) // 2, (
                        middle_finger_tip_y + index_finger_tip_y) // 2
            # print(thumb_finger_tip_x)
            middle_finger_point = (middle_finger_tip_x, middle_finger_tip_y)
            index_finger_point = (index_finger_tip_x, index_finger_tip_y)
            # 画指尖2点
            image = cv2.circle(image, middle_finger_point, 10, (255, 0, 255), -1)
            image = cv2.circle(image, index_finger_point, 10, (255, 0, 255), -1)
            image = cv2.circle(image,  middle_index_finger_middle_point, 10, (255, 0, 255), -1)
            # 画2点连线
            image1 = cv2.line(image, middle_finger_point, index_finger_point, (255, 0, 255), 5)
            # 勾股定理计算长度
            middle_index_line_len = math.hypot((middle_finger_tip_x - index_finger_tip_x),
                                      (middle_finger_tip_y - index_finger_tip_y))

5)将拇指与食指距离与电脑音量进行关联

# 当食指中指距离大于65像素允许调音量
if middle_index_line_len < 65.0:
    # 拇指与食指中间点
    finger_middle_point = (thumb_finger_tip_x + index_finger_tip_x) // 2, (
                thumb_finger_tip_y + index_finger_tip_y) // 2
    # print(thumb_finger_tip_x)
    thumb_finger_point = (thumb_finger_tip_x, thumb_finger_tip_y)
    index_finger_point = (index_finger_tip_x, index_finger_tip_y)
    # 画2点连线
    image = cv2.line(image, thumb_finger_point, index_finger_point, (255, 0, 255), 5)
    # 勾股定理计算长度
    line_len = math.hypot((index_finger_tip_x - thumb_finger_tip_x),
                          (index_finger_tip_y - thumb_finger_tip_y))
    # 获取电脑最大最小音量
    min_volume = self.volume_range[0]
    max_volume = self.volume_range[1]
    # 将指尖长度映射到音量上
    vol = np.interp(line_len, [50, 300], [min_volume, max_volume])
    # 将指尖长度映射到矩形显示上
    rect_height = np.interp(line_len, [50, 300], [0, 200])
    rect_percent_text = np.interp(line_len, [50, 300], [0, 100])
    # 设置电脑音量
    self.volume.SetMasterVolumeLevel(vol, None)
#锁定调音量,进行鼠标控制
else:                             
    for id, lm in enumerate(hand_landmarks.landmark):
        # print(id,lm)
        h, w, c = image.shape
        cx, cy = int(lm.x * w), int(lm.y * h)
        # id=手部关键点
        if id == 0:
            if cx > dot[0] and cx < dot[2] and cy > dot[1] and cy < dot[3]:
                x0 = ((cx-dot[0])/(dot[2]-dot[0]))*1920
                y0 = ((cy-dot[1])/(dot[3]-dot[1]))*1080
                pyautogui.moveTo(x0, y0, duration=0.02)
        # print(thumb_finger_tip_x)
        thumb_finger_point = (thumb_finger_tip_x, thumb_finger_tip_y)
        index_finger_point = (index_finger_tip_x, index_finger_tip_y)
        # 画指尖2点
        image = cv2.circle(image, thumb_finger_point, 10, (255, 0, 255), -1)
        image = cv2.circle(image, index_finger_point, 10, (255, 0, 255), -1)
        image = cv2.circle(image, finger_middle_point, 10, (255, 0, 255), -1)
        # 画2点连线
        image = cv2.line(image, thumb_finger_point, index_finger_point, (255, 0, 255), 5)
        # 勾股定理计算长度
        line_len = math.hypot((index_finger_tip_x - thumb_finger_tip_x),
                              (index_finger_tip_y - thumb_finger_tip_y))
        # 操作
        # 左键双击   
        if line_len < 20:
            pyautogui.doubleClick()
            ms_d = 0

三、使用方式

1)直接运行程序

2)把手掌靠近摄像头,置于矩形框内

3)通过拇指与食指的开合即可调节音量

到此这篇关于Python实战之手势识别控制电脑音量的文章就介绍到这了,更多相关Python手势识别控制电脑音量内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python实战之手势识别控制电脑音量

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python实战之手势识别控制电脑音量

这篇文章主要为大家详细介绍了一个PythonOpenCV的实战小项目——手势识别控制电脑音量,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
2023-05-18

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录