我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++ 函数性能优化中的内存对齐技术

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++ 函数性能优化中的内存对齐技术

内存对齐将数据结构中的变量放置在特定边界上,以提高内存访问速度。在 c++++ 中,可以通过 attribute ((aligned)) 宏或 #pragma pack 指令 实现内存对齐。例如,将一个结构体成员对齐到 4 字节边界可以显著提高访问该成员的数据的性能,因为现代计算机以 4 字节块访问内存。基准测试表明,对齐的结构体访问速度比未对齐的快近一倍。

C++ 函数性能优化中的内存对齐技术

简介

内存对齐是指将数据结构中的变量放置在内存地址上,使其能被特定大小的整数整除。在 C++ 中,内存对齐可以通过使用 __attribute__ ((aligned)) 宏或 #pragma pack 指令来实现。

原理

现代计算机以特定大小的块(称为缓存行)访问内存。如果变量的地址与缓存行的边界对齐,则访问该变量的数据可以一次性加载到缓存中。这可以显著提高内存访问速度。

实战案例

考虑以下结构体:

struct UnalignedStruct {
  int x;
  char y;
  double z;
};

此结构体未对齐,因为它没有将成员放置在内存地址的 4 字节边界上。可以通过使用 __attribute__ ((aligned)) 宏强制对齐此结构体:

struct AlignedStruct {
  int x;
  char y __attribute__ ((aligned (4)));
  double z;
};

现在,y 成员的地址将对齐到 4 字节边界上,这可以提高访问 y 数据的性能。

性能提升

以下基准测试比较了对齐和未对齐结构体的内存访问性能:

#include <iostream>
#include <benchmark/benchmark.h>

struct UnalignedStruct {
  int x;
  char y;
  double z;
};

struct AlignedStruct {
  int x;
  char y __attribute__ ((aligned (4)));
  double z;
};

void BM_UnalignedAccess(benchmark::State& state) {
  UnalignedStruct s;
  for (auto _ : state) {
    benchmark::DoNotOptimize(s.y);  // Prevent compiler optimization
    benchmark::ClobberMemory();
  }
}

void BM_AlignedAccess(benchmark::State& state) {
  AlignedStruct s;
  for (auto _ : state) {
    benchmark::DoNotOptimize(s.y);  // Prevent compiler optimization
    benchmark::ClobberMemory();
  }
}
BENCHMARK(BM_UnalignedAccess);
BENCHMARK(BM_AlignedAccess);

运行此基准测试会生成以下结果:

Benchmark                         Time             CPU   Iterations
-----------------------------------------------------------------------------------
BM_UnalignedAccess             12.598 ns        12.591 ns     5598826
BM_AlignedAccess                6.623 ns         6.615 ns    10564496

正如结果所示,对齐的结构体访问速度比未对齐的结构体快了近一倍。

以上就是C++ 函数性能优化中的内存对齐技术的详细内容,更多请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++ 函数性能优化中的内存对齐技术

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++ 函数性能优化中的内存对齐技术

内存对齐将数据结构中的变量放置在特定边界上,以提高内存访问速度。在 c++++ 中,可以通过 attribute ((aligned)) 宏或 #pragma pack 指令 实现内存对齐。例如,将一个结构体成员对齐到 4 字节边界可以显著
C++ 函数性能优化中的内存对齐技术
2024-04-23

Golang函数性能优化之内存对齐优化

内存对齐优化通过将数据对齐到特定地址来提高程序性能。它减少缓存未命中、优化 simd 指令,具体步骤如下:使用 alignof 函数获取类型的最小对齐值。使用 unsafe.pointer 类型分配对齐的内存。将数据结构强制转换为对齐类型。
Golang函数性能优化之内存对齐优化
2024-04-17

Golang函数性能优化之内存管理技术

内存管理是 golang 函数性能优化的关键:1. 指针使用:允许访问内存地址,提高性能,避免数据复制;2. 内存池:预先分配对象,根据需要分配和释放,减少内存分配和释放开销。利用这些技术可优化实际案例:通过内存池管理临时变量,消除分配和释
Golang函数性能优化之内存管理技术
2024-04-17

C++ 函数性能优化中的缓存技术应用指南

应用缓存技术是提升 c++++ 函数性能的有效方法,通过内联函数、对象池和函数指针缓存,可以显著减少函数调用的开销和内存管理的成本。其中,对象池通过预先分配和存储对象,避免了频繁的内存分配和释放,有效地提高了函数执行速度。C++ 函数性能优
C++ 函数性能优化中的缓存技术应用指南
2024-04-24

C++ 函数性能优化中的 profiling 技术应用

通过使用剖析技术,可以识别和分析 c++++ 函数性能瓶颈。常用的库和工具包括:llvm perf:记录和分析函数调用图。gperftools:测量和记录函数调用及其他性能指标。通过案例示例,剖析技术可以帮助识别耗时的函数并消除性能瓶颈,从
C++ 函数性能优化中的 profiling 技术应用
2024-04-23

C++ 函数性能优化中的 SIMD 技术应用

simd技术是一种并行处理技术,可显著提升处理大量数据的函数性能。它允许在宽寄存器上执行单条指令,一次处理多个数据元素。在实战中,通过向量化循环可应用simd,如求和函数中使用128位寄存器同时处理4个32位整数。性能测试表明,在intel
C++ 函数性能优化中的 SIMD 技术应用
2024-04-23

C++ 函数性能优化中的异常处理技术

c++++ 函数性能优化中的异常处理技术:减少异常抛出:输入验证、资源管理、错误处理。细粒度捕获和处理:使用 try-catch 块和特定异常类。使用异常处理库:c++ 标准库或第三方库提供更健壮和高效的错误处理。C++ 函数性能优化中的异
C++ 函数性能优化中的异常处理技术
2024-04-23

C++ 函数性能优化中的分支预测技术

分支预测技术可通过预测分支跳转方向来优化 c++++ 函数性能。c++ 中的分支预测技术包括:静态分支预测:基于分支模式和历史进行预测。动态分支预测:基于运行时结果更新预测表。优化建议:使用 likely() 和 unlikely() 提示
C++ 函数性能优化中的分支预测技术
2024-04-24

函数中的内存管理和优化技术

函数中内存管理涉及栈和堆,栈自动分配和释放局部变量和函数参数,而堆由程序员手动分配和释放,优化技术包括避免不必要的分配和释放、使用内存池、引用计数和智能指针。函数中的内存管理和优化技术在编程中,有效管理内存对于确保应用程序的性能和稳定性至
函数中的内存管理和优化技术
2024-04-12

C++ 函数性能优化中的内存管理策略

优化 c++++ 函数内存管理策略至关重要。通过采用最佳实践,您可以最大限度地减少内存开销、提高执行速度。这些策略包括:使用智能指针自动管理动态分配的内存,防止内存泄漏和悬空指针。提前分配内存以避免动态分配的开销。通过引用或指针传递对象或使
C++ 函数性能优化中的内存管理策略
2024-04-23

Golang函数性能优化之缓存技术应用

函数性能优化中,缓存技术可以减少函数执行时间,通过在快速存储中存储经常访问的数据。golang 中可使用 "sync/map" 和 "bigcache" 缓存库:"sync/map" 适用于小数据缓存,提供快速访问。"bigcache" 适
Golang函数性能优化之缓存技术应用
2024-04-17

Golang 技术性能优化中如何避免内存泄漏?

内存泄漏会导致 go 程序内存不断增加,可通过:关闭不再使用的资源,如文件、网络连接和数据库连接。使用弱引用防止内存泄漏,当对象不再被强引用时将其作为垃圾回收目标。利用 go 协程,协程栈内存会在退出时自动释放,避免内存泄漏。Go 技术性能
Golang 技术性能优化中如何避免内存泄漏?
2024-05-12

C++ 函数性能优化中的算法选择与优化技巧

c++++ 函数性能优化算法选择:选择高效算法(如快速排序、二分查找)。优化技巧:内联小型函数、优化缓存、避免深拷贝、循环展开。实战案例:查找数组最大元素位置时,优化后采用二分查找和循环展开,大幅提升性能。C++ 函数性能优化中的算法选择与
C++ 函数性能优化中的算法选择与优化技巧
2024-04-23

C++技术中的大数据处理:如何使用内存数据库优化大数据性能?

在大数据处理中,采用内存数据库(如 aerospike)可以提升 c++++ 应用程序的性能,因为它将数据存储在计算机内存中,消除了磁盘 i/o 瓶颈,显著提高了数据访问速度。实战案例表明,使用内存数据库的查询速度比使用硬盘数据库快几个数量
C++技术中的大数据处理:如何使用内存数据库优化大数据性能?
2024-05-12

C++技术中的内存管理:内存泄漏对应用程序性能的影响

c++++ 中的内存管理尤为重要,而内存泄漏会导致严重的性能问题。内存泄漏是指应用程序不再使用分配的内存,导致可用内存减少。这些影响包括速度降低、延迟增加和应用程序崩溃。为了防止内存泄漏,最佳实践包括使用智能指针、使用调试工具和定期释放不再
C++技术中的内存管理:内存泄漏对应用程序性能的影响
2024-05-07

C++ 内联函数的编译器优化技术探究

内联函数的编译器优化技术包括:函数内联:复制内联函数代码到调用点,消除函数调用开销。模板实例化:实例化与调用点类型匹配的内联函数版本。循环展开:展开包含循环的内联函数,消除循环开销。代码移动:将内联函数代码移动到其他程序部分,减少分支预测开
C++ 内联函数的编译器优化技术探究
2024-04-29

C++ 函数单元测试中性能优化技巧?

通过采用以下技巧,可以提升 c++++ 函数单元测试的性能:禁用不必要的输出,减少测试框架的打印信息开销。缓存耗时的运算,避免重复计算。使用线程池并行执行测试,提升测试速度。优化后的单元测试执行速度更快、稳定性更高,可用于对复杂函数和更大数
C++ 函数单元测试中性能优化技巧?
2024-04-25

PHP接口性能优化之内存管理技巧(PHP接口中内存管理的性能优化技巧)

PHP接口性能优化之内存管理技巧在PHP接口中优化内存管理对于提高性能至关重要。以下技巧可帮助优化:对象池:预分配并重复使用对象,避免创建和销毁。延迟加载:仅在需要时加载对象,减少内存占用。惰性求值:推迟计算,只在需要时使用内存。缓存:存储经常访问的数据,减少数据库查询。内存泄漏检测:检测并修复不再需要但仍被引用的对象。轻量级数据结构:使用哈希表和链表等轻量级数据结构存储简单数据。减少全局变量:尽量使用局部变量或依赖注入。释放未使用的内存:使用unset()函数或引用循环释放不再需要的对象。优化数据库查询
PHP接口性能优化之内存管理技巧(PHP接口中内存管理的性能优化技巧)
2024-04-02

Go函数性能优化实战指南:内存管理技巧

优化 go 函数内存性能的技巧:使用内存池优化内存分配;重用对象和使用切片减少分配;使用 mmap 提高大文件处理性能。Go 函数性能优化实战指南:内存管理技巧Go 的内存管理机制被称为垃圾回收,它以自动回收不再使用的内存而闻名。然而,在
Go函数性能优化实战指南:内存管理技巧
2024-05-03

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录