我的编程空间,编程开发者的网络收藏夹
学习永远不晚

numpy(一)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

numpy(一)

np.zeros(10,dtype=int) #创建全为0的一位数组

np.ones((3,5),dtype=float) #创建3*5的二维全为1的数组

np.full((3,5),3.14) #创建全为3.14的3*5数组

np.arange(0,20,2)  #创建0-20步长为2的线性序列数组 和range相似

np.linspace(0,1,5)  #创建0-1之间的5个数数组

np.random.random((3,3)) #创建3*3在0-1之间均匀分布的随机数组成的数组

np.random.normal(0,1,(3,3)) #创建3*3的均值为0方差为1的正态分布随机数数组

np.random.randint(0,10,(3,3)) #创建3*3在0-10区间的随机整数型数组

np.eye(3) # 创建3*3的单位矩阵

np.empty(3) #创建一个有3个整数型组成的未初始化数组,值可以使内存空间的任意值

 

 

 

np属性:

  np.ndim 数组的维度

  np.shape 数组的每个维度大小

  np.size  数组的总大小

  dtype 数据类型

 

切片,索引:

  x=np.array([5,2,3,7,8,9])

  x[0] #取索引为0的值

  x[-1] #取最后一个值

  x2=np.arange(0,24).reshape((3,8))

  x2[0,1] #取行索引为0列索引为1的值

  x2[0,0]=12 #修改值

  #当将一个浮点型插入到整数型数组中时,浮点型会被截断

  

  一维切片:

  x=np.arange(10)

  x[:5]  #取前五个元素

  x[5:] #取后五个元素

  x[4:7] # 取中间子数组

  x[::2]  #步长为2取出数组

  x[::-1] #逆向取数组

  

  多维切片:

  x2=np.arange(12).reshape((3,4))

  x2[:2,:3] #两行三列

  x2[:3,::2] #取三行,列隔行取

  x2[::-1,::-1] # 逆向取

  x2[:,0] #取第一列

  x2[0,:] # 取第一行

  x2[0]  #取第一行简化

       *注意切片获取到的元素改变原数组也会改变,需加copy

  

  reshape重组数组

  np.arange(12).reshape((3,4)) #重组成3*4的二维数组

  x2[np.newaxis,:]  #获取行向量

  x2[:,np.newaxis] #获取列向量

  

  数组拼接:

  一维数组:   

  x=np.array([1,2,3])
  y=np.array([3,2,1])
  z=np.array([4,5,6])

  np.concatenate([x,y,z])  

  

  二维数组:

  x=np.arange(12).reshape((3,4))

  y=np.arange(12,24).reshape((3,4))

  np.concatenate([x,y],axis=1) # axis=1左右拼接,axis=0上下拼接

  np.vstack 垂直栈函数,上下拼接,np.hstack 水平栈左右拼接

  np.dstack 沿第三个维度拼接

  

数组分裂:

  x=[1,2,3,55,55,3,2,1]

  x1,x2,x3 = np.split(x,[3,5])

  vsplit 行分裂,hspit列分裂,dsplit第三维度分裂

 

 

  

 

  

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

numpy(一)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

numpy(一)

np.zeros(10,dtype=int) #创建全为0的一位数组np.ones((3,5),dtype=float) #创建3*5的二维全为1的数组np.full((3,5),3.14) #创建全为3.14的3*5数组np.arange
2023-01-31

NumPy 学习笔记(一)

NumPy:  1、NumPy 是一个功能强大的第三方库(需要自己安装),主要用于对多维数组执行计算;     它提供了大量的库函数和操作,可以帮助程序员更轻松地进行数值计算  2、可以和另外两个第三方库 SciPy 和 Matplotli
2023-01-31

NumPy学习笔记(一)

# NumPy### 安装- 通过安装Anaconda安装NumPy,一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项,包含了大量的科学计算相关的包,其中就包括NumPy- 通过pip安装,
2023-01-31

Pandas图鉴之一:Pandas vs Numpy

如果你100%​确定你的列中没有缺失值,那么使用df.column.values.sum()​而不是df.column.sum()​来获得x3-x30​的性能提升是有意义的。在存在缺失值的情况下,Pandas的速度是相当不错的,对于巨大的数

Python机器学习三大件之一numpy

一、前言 机器学习三大件:numpy, pandas, matplotlib Numpy(Numerical Python)是一个开源的Python科学计算库,用于快速处理任意维度的数组。 Numpy支持常见的数组和矩阵操作。对于同样的数值
2022-06-02

不可不学Numpy,带你快速撸Numpy代码,(Python学习教程)一遍过

我们一起来学习Python数据分析的工具学习阶段,包括Numpy,Pandas以及Matplotlib,它们是python进行科学计算,数据处理以及可视化的重要库,在以后的数据分析路上会经常用到,所以一定要掌握,并且还要熟练!今天的Pyth
2023-06-02

Python+numpy实现一个蜘蛛纸牌游戏

蜘蛛纸牌大家玩过没有?之前的电脑上自带的游戏,用他来摸鱼过的举个手。但是现在的电脑上已经没有蜘蛛纸牌了。所以本文就来用Python做一个吧,需要的可以参考一下
2022-12-08

一分钟了解numpy版本查询技巧

NumPy是Python中最常用的科学计算库之一,广泛应用于数组数据处理、线性代数、傅里叶变换、随机数生成等领域。在使用NumPy时,我们通常需要查询当前所使用的版本号以保证程序的兼容性和正确性。本文将介绍如何使用NumPy内置的版本查询功
一分钟了解numpy版本查询技巧
2024-01-19

怎么在python中创建一个numpy数组

本篇文章为大家展示了怎么在python中创建一个numpy数组,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。python可以做什么Python是一种编程语言,内置了许多有效的工具,Python几乎无
2023-06-14

利用numpy怎么实现一个RNN功能

这期内容当中小编将会给大家带来有关利用numpy怎么实现一个RNN功能,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。import numpy as npclass Rnn(): def __init__
2023-06-06

Python大数据为啥一定要用Numpy Array?

Python的核心库提供了 List 列表。列表是最常见的Python数据类型之一,它可以调整大小并且包含不同类型的元素,非常方便。

numpy

一、NumPy简介:  NumPy是python一个包。它是一个由多为数组对象和用于处理数字的例程集合组成的库。二、Ndarray对象  NumPy中的数组类称为ndarray,ndarray是一系列同类型数据的集合,以0下标为开始进行集合
2023-01-30

Numpy安装攻略:一文解决安装难题

Numpy安装攻略:一文解决安装难题,需要具体代码示例引言:Numpy是Python中一款强大的科学计算库,它提供了高效的多维数组对象和对数组数据进行操作的工具。但是,对于初学者来说,安装Numpy可能会带来一些困扰。本文将为大家提供一份
Numpy安装攻略:一文解决安装难题
2024-02-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录