我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Windows 系统从零配置 Python 环境,安装CUDA、CUDNN、PyTorch 详细教程

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Windows 系统从零配置 Python 环境,安装CUDA、CUDNN、PyTorch 详细教程

文章目录

1 配置 python 环境

1.1 安装 Anaconda

进入anaconda官网:https://www.anaconda.com/
在这里插入图片描述
点击 download 下载文件,我这里是 Anaconda3-2022.10-Windows-x86_64.exe(后续更新版本exe文件会有差别)

下载后打开 .exe 文件下载 anaconda:

选择安装路径(用默认的路径也可以):

这里两个都选:

然后安装就可以了。

1.2 检查环境安装成功

打开 cmd,输入 conda(如果是下图这样就说明 anaconda 安装成功了):
在这里插入图片描述
输入 python,这里可以查看 Python 的版本:
在这里插入图片描述

1.3 创建虚拟环境

在 cmd 中输入 conda create -n 环境名 python==版本号,如:conda create -n pytorch python==3.9.13(这里我自定义环境名为 pytorch,python 版本为 3.9.13)

输入 y

创建完就是这样的:

1.4 进入/退出 刚刚创建的环境

进入环境:输入 conda activate 环境名,如 conda activate pytorch
在这里插入图片描述
退出环境:输入 conda deactivate

1.5 其它操作

1.5.1 查看电脑上所有已创建的环境

conda info --env

1.5.2 删除已创建的环境

conda remove -n 环境名 --all

2 安装 CUDA 和 CUDNN

2.1 查看自己电脑支持的 CUDA 版本

可参考:如何查看自己电脑当前版本CUDA 可兼容的最高版本

这就说明我的电脑可以安装的 CUDA 版本可以是 11.7.1 及以下的版本。

2.2 安装 CUDA

建议先去 pytorch 官网看下目前可以直接用指令安装的 CUDA 版本(主要是为了方便后续操作),此外,https://pytorch.org/get-started/previous-versions/ 也提供了以前版本的安装指令:

看 Compute Platform,有 CUDA 11.6CUDA 11.7,而且我电脑支持的最高 CUDA 版本为 11.7.1,所以后续安装时就安 11.6 或 11.7 版本的 CUDA。

前往 CUDA 官网:https://developer.nvidia.com/cuda-toolkit-archive

这里以 11.7.0 版本为例:
在这里插入图片描述

按如下选择(Installer Type两种都可以,因为是国外网站,下载用外网,如果速度慢的话就选 exe(network)):
在这里插入图片描述

下载完后执行 .exe 文件。

根据自己需求选择是否更改安装路径:

选择自定义:

这个不用管,点下一步就行:

选择安装位置(这里我改了路径,用默认的也可以,这个路径要记住,后续要用):

至此 CUDA 安装结束。


2.3 安装 CUDNN

进入官网:https://developer.nvidia.com/rdp/cudnn-download

在这里插入图片描述
先登录/注册账号,然后按如下选择:在这里插入图片描述

将下载后的 zip 文件解压,里面的内容如下:

找到刚才安装 CUDA 时选择的安装位置:

然后将 CUDNN 中 bin 文件夹中的所有文件复制到 .../CUDA/v11.7/bin 中;
CUDNN 中 include 文件夹中的所有文件复制到 .../CUDA/v11.7/include 中;
CUDNN 中 lib/x64 文件夹中的所有文件复制到 .../CUDA/v11.7/lib/x64 中。

至此 CUDNN 安装结束。

2.4 检查 CUDA 安装成功(查看 GPU 使用率、显存占用情况)

在 cmd 中输入 nvidia-smi,同时这个指令也可以查看 GPU 的一些信息,如果出现如下界面就说明 CUDA 安装成功了,这是最好的(但好像有的电脑会报错 'nvidia-smi'不是内部或外部命令,这不一定就表示 CUDA 安装失败了,可以搜一下解决方案,或者暂时不用管,继续往后做,即使安装失败也不会影响后续的操作,后面安装完 pytorch 后还能用其他代码检查 CUDA 是否可用)。

在这里插入图片描述


3 安装 PyTorch

3.1 安装 PyTorch

进入官网:https://pytorch.org/

点击 Install:
在这里插入图片描述
按如下选择(CUDA 版本要对应),下图中 Run this Command 中的指令后续要用到:

打开 cmd,进入之前创建的 Python 环境,输入 conda activate 环境名,如:conda activate pytorch

进入环境后输入指令(来源于上图):conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia这里要挂下外网,不然安装很慢的,没有条件的话请移步 【3.3 其它方法】。注意,不要像一些教程那样用清华源,用清华源安装的 pytorch 没有 GPU 版本的,全是依靠 CPU 的,GPU 和 CPU 的算力差距很大,跑深度学习代码时用 CPU 能慢死

在这里插入图片描述
输入 y

然后等待安装就可以了,安装完是这样的:

在这里插入图片描述

3.2 检查安装是否成功

可输入如下指令:

import torchprint(torch.version.cuda)  # 查看 CUDA 版本print(torch.cuda.is_available())  # 查看 CUDA 是否可用(即训练时是否可用 GPU)print(torch.cuda.device_count())  # 查看可行的 CUDA 数目

在这里插入图片描述

3.3 其它方法

如果没有加速器挂不了外网的话操作就比较麻烦了。这里再强调一遍!!!不要像一些教程那样用清华源,用清华源安装的 PyTorch 没有 GPU 版本的,全是依靠 CPU 的,跑深度学习代码时用 CPU 很慢。

在 PyTorch 官网中选择 Pip 的方法,找到如下网址:
在这里插入图片描述

然后我们进入打开这个网址,也就是 https://download.pytorch.org/whl/cu117

里面就是这样的:

我们需要自己下载的文件就是 torchtorchvisiontorchaudio

然后我们先点击进入 torch,找到如下位置(根据自己的 CUDA 版本、python 版本找到相应的文件,cu117 指的是 CUDA 版本为 11.7,cp39 指的是 python 版本为 3.9,版本一定要对应上),点击下载:

在这里插入图片描述

torchvisiontorchaudio 同理:

然后我们把这三个 .whl 文件随便放到一个文件夹下:

然后打开 cmd,进入到这个文件夹,用 pip install 刚刚下载的文件 安装:

pip install torch-1.13.1+cu117-cp39-cp39-win_amd64.whlpip install torchvision-0.14.1+cu117-cp39-cp39-win_amd64.whlpip install torchaudio-0.13.1+cu117-cp39-cp39-win_amd64.whl

4 在 PyCharm 中使用 PyTorch

首先新建项目,按如下步骤操作:
在这里插入图片描述
在这里插入图片描述

然后点击 Create 创建项目即可

可通过以下代码测试使用 PyTorch:

import torchprint(torch.version.cuda)  # 查看 CUDA 版本print(torch.cuda.is_available())  # 查看 CUDA 是否可用(即训练时是否可用 GPU)print(torch.cuda.device_count())  # 查看可行的 CUDA 数目device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print(device)print(torch.cuda.get_device_name(0))print(torch.rand(3, 3).cuda())

在这里插入图片描述

5 远程 Linux 服务器配置 PyTorch

远程服务器配置 Anaconda 并安装 PyTorch 详细教程

来源地址:https://blog.csdn.net/Friedrichor/article/details/129093495

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Windows 系统从零配置 Python 环境,安装CUDA、CUDNN、PyTorch 详细教程

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

VS Code安装及C、C++环境配置详细教程(Windows系统)

这篇文章主要介绍了VS Code安装及C、C++环境配置详细教程(Windows系统),本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-02-24

Windows上安装 jdk 环境并配置环境变量 (超详细教程)

👨‍🎓博主简介   🏅云计算领域优质创作者   🏅华为云开发者社区专家博主   🏅阿里云开发者社区专家博主 💊交流社区:运维交流社区 欢迎
2023-08-16

node.js安装及环境配置超详细步骤讲解(Windows系统安装包方式)

这篇文章主要介绍了node.js安装及环境配置超详细教程(Windows系统安装包方式),本文分步骤通过图文并茂的形式给大家介绍的非常详细,需要的朋友可以参考下
2023-02-03

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录