我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python技巧之四种多线程应用分享

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python技巧之四种多线程应用分享

在Python中,多线程是实现并发的一种方式。多线程可以让程序在同一时间内进行多个任务,从而提高程序的效率和执行速度。

本文将介绍Python中多线程的所有方式,包括使用threading模块、使用concurrent.futures模块、使用multiprocessing模块以及使用asyncio模块。

1.使用threading模块

Python中的threading模块提供了多线程编程的基本支持。使用该模块可以创建和管理线程,从而实现并发执行。下面是使用threading模块实现多线程的示例代码:

import threading
def worker():
    print('Worker thread started')
    # do some work here
    print('Worker thread finished')
if __name__ == '__main__':
    print('Main thread started')
    # create a new thread
    t = threading.Thread(target=worker)
    # start the new thread
    t.start()
    print('Main thread finished')

在上面的代码中,我们首先定义了一个worker函数,该函数会在一个新的线程中执行。

然后,在主线程中创建了一个新的线程t,并将worker函数作为该线程的目标。

最后,通过调用start方法来启动新线程。运行上面的代码,输出结果如下:

Main thread started
Worker thread started
Main thread finished
Worker thread finished

从上面的输出结果可以看出,程序先执行了主线程中的代码,然后创建了一个新的线程,并在新线程中执行worker函数。

主线程和新线程是并行执行的,因此程序的执行速度得到了提高。

2.使用concurrent.futures模块

concurrent.futures模块是Python 3中的新模块,它提供了线程池和进程池的实现。使用该模块可以更方便地实现并行执行。

下面是使用concurrent.futures模块实现多线程的示例代码:

import concurrent.futures
def worker():
    print('Worker thread started')
    # do some work here
    print('Worker thread finished')
if __name__ == '__main__':
    print('Main thread started')
    # create a thread pool
    with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
        # submit worker function to the pool
        future = executor.submit(worker)
        print('Main thread finished')

在上面的代码中,我们首先定义了一个worker函数,该函数会在一个新的线程中执行。

然后,在主线程中创建了一个线程池executor,并设置最大线程数为2。接着,通过调用submit方法将worker函数提交给线程池。

最后,我们输出了一条信息,表示主线程已经执行完毕。运行上面的代码,输出结果如下:

Main thread started
Main thread finished
Worker thread started
Worker thread finished

从上面的输出结果可以看出,程序先执行了主线程中的代码,然后通过线程池执行了worker函数。线程池会自动管理线程的创建和销毁,从而使程序更加高效。

3.使用multiprocessing模块

Python中的multiprocessing模块提供了多进程编程的支持。使用该模块可以在不同的进程中执行任务,从而实现并发执行。

下面是使用multiprocessing模块实现多线程的示例代码:

import multiprocessing
def worker():
    print('Worker process started')
    # do some work here
    print('Worker process finished')
if __name__ == '__main__':
    print('Main process started')
    # create a new process
    p = multiprocessing.Process(target=worker)
    # start the new process
    p.start()
    print('Main process finished')

在上面的代码中,我们首先定义了一个worker函数,该函数会在一个新的进程中执行。然后,在主进程中创建了一个新的进程p,并将worker函数作为该进程的目标。

最后,通过调用start方法来启动新进程。运行上面的代码,输出结果如下:

Main process started
Main process finished
Worker process started
Worker process finished

从上面的输出结果可以看出,程序先执行了主进程中的代码,然后创建了一个新的进程,并在新进程中执行worker函数。

主进程和新进程是并行执行的,因此程序的执行速度得到了提高。

4.使用asyncio模块

Python中的asyncio模块提供了异步编程的支持。使用该模块可以实现协程,从而在单线程中实现并发执行。

下面是使用asyncio模块实现多线程的示例代码:

import asyncio
async def worker():
    print('Worker task started')
    # do some work here
    print('Worker task finished')
if __name__ == '__main__':
    print('Main task started')
    # create a new event loop
    loop = asyncio.get_event_loop()
    # run the worker coroutine
    loop.run_until_complete(worker())
    # close the event loop
    loop.close()
    print('Main task finished')

在上面的代码中,我们首先定义了一个异步函数worker,该函数会在一个协程中执行。

然后,在主任务中创建了一个新的事件循环loop,并通过调用run_until_complete方法来运行worker协程。

最后,我们关闭了事件循环。运行上面的代码,输出结果如下:

Main task started
Worker task started
Worker task finished
Main task finished

从上面的输出结果可以看出,程序先执行了主任务中的代码,然后通过事件循环执行了worker协程。

协程是在单线程中执行的,因此程序的执行速度得到了提高。

5.总结

本文介绍了Python中多线程的所有方式,包括使用threading模块、使用concurrent.futures模块、使用multiprocessing模块以及使用asyncio模块。

不同的方式适用于不同的场景,可以根据需要选择最合适的方式。

多线程编程可以提高程序的效率和执行速度,但需要注意线程安全和锁的使用。

到此这篇关于Python技巧之四种多线程应用分享的文章就介绍到这了,更多相关Python多线程内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python技巧之四种多线程应用分享

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python技巧之四种多线程应用分享

目录1.使用threading模块2.使用concurrent.futures模块3.使用multiprocessing模块4.使用asyncio模块在Python中,多线程是实现并发的一种方式。多线程可以让程序在同一时间内进行多个任务,从
2023-05-12

Python多线程应用技巧该怎么用

今天就跟大家聊聊有关Python多线程应用技巧该怎么用,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。在编程语言中,多线程的应用是一个比较重要的应用技术,那么Python中的多线程应用
2023-06-17

Golang应用程序性能优化技巧分享

随着科技的进步,人人都想要快速的应用,这就需要优化您的应用程序性能。本文为大家整理了一些Golang应用程序性能优化的技巧,希望对大家有所帮助
2023-05-15

Python 多线程与多进程:实战案例剖析,掌握并发编程的应用技巧

Python 多线程、多进程是实现并发编程的两种主要方式,在实践中各有所长。本文将通过两个实战案例,深入剖析多线程、多进程的应用技巧,帮助开发者更好地掌握并发编程。
Python 多线程与多进程:实战案例剖析,掌握并发编程的应用技巧
2024-02-24

android 为应用程序创建桌面快捷方式技巧分享

我们开发一款软件后,如果手机装的软件过多,去翻的话会很难翻的,所以,在主页面有一个快捷方式的话会很不错的,下面是详细代码: 代码如下: private void createShortcut() { S
2022-06-06

如何分析Python多线程在爬虫中的应用

本篇文章为大家展示了如何分析Python多线程在爬虫中的应用,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。作为测试工程师经常需要解决测试数据来源的问题,解决思路无非是三种:1、直接从生产环境拷贝真实
2023-06-04

系统集成项目管理工程师考试技巧分享,助你一臂之力!(软考中级系统集成项目管理工程师考试应试技巧汇总)

系统集成项目管理工程师考试技巧:了解考试范围和制定复习计划。掌握教材重点,注重案例分析。练习真题,掌握答题技巧。合理时间管理,考前充分准备。关注考试信息,寻求导师指导。
系统集成项目管理工程师考试技巧分享,助你一臂之力!(软考中级系统集成项目管理工程师考试应试技巧汇总)
2024-04-02

C/C++中多进程之间的线程如何利用XSI IPC共享内存分配互斥量进行同步

这篇文章主要介绍了C/C++中多进程之间的线程如何利用XSI IPC共享内存分配互斥量进行同步,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。#include
2023-06-03

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录