我的编程空间,编程开发者的网络收藏夹
学习永远不晚

NumPy 学习笔记(四)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

NumPy 学习笔记(四)

NumPy 算术函数:

  1、numpy.reciprocal(arr) 返回参数逐个元素的倒数

  2、numpy.power(one, two) 将第一个输入数组中的元素作为底数,计算它与第二个输入数组中相应元素的,即 one^two

  3、numpy.mod(x1, x2) 计算输入数组中相应元素的余数,函数 numpy.remainder(x1, x2) 也产生相同的结果

import numpy as np

arr = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
print("reciprocal arr: ", np.reciprocal(arr))
print("power by 2: ", np.power(arr, 2))
print("mod by arr.T: ", np.mod(arr, arr.T))
print("remainder by arr.T: ", np.remainder(arr, arr.T))

 

NumPy 统计函数:

  1、numpy.amax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>)

     和 numpy.max(a, axis=None, out=None, keepdims=<no value>, initial=<no value>)

     用于计算数组中的元素沿指定轴的最大值,若未给定 axis 的值,则默认选出数组里最大的数

  2、numpy.amin() 和 numpy.min() 的格式与上面一样,其返回最小值

  3、numpy.ptp(a, axis=None, out=None, keepdims=<no value>) 计算数组中元素最大值与最小值的差

  4、numpy.percentile(a, q, axis) a 表示一个数组对象,q 表示要计算的百分数(0-100),axis 是轴,返回大于等于 q% 个数的那个数

  5、numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False) 计算 a 的中位数

  6、numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<no value>) 返回数组中元素的算术平均值

     如果提供了轴,则沿其计算

  7、numpy.average(a, axis=None, weights=None, returned=False) 根据 weights 中给出的各自的权重计算数组中元素的加权平均值

     returned=True 时则返回权重的和,当 weights.shape != a.shape 时必须指定轴

  8、numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>) 计算标准差

  9、numpy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>) 计算方差

import numpy as np

arr = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
# numpy.amax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>) # numpy.amin(a, axis=None, out=None, keepdims=<no value>, initial=<no value>) # numpy.max 和 numpy.min 的格式和上面一样 print("max: ", np.amax(arr, axis=1)) print("max: ", np.max(arr)) print("min: ", np.amin(arr)) print("min: ", np.min(arr, axis=1)) # numpy.ptp(a, axis=None, out=None, keepdims=<no value>) 计算数组中元素最大值与最小值的差(最大值 - 最小值) print("ptp(arr, axis=0): ", np.ptp(arr, axis=0)) print("ptp(arr, axis=1): ", np.ptp(arr, axis=1)) print("ptp(arr): ", np.ptp(arr)) # numpy.percentile(a, q, axis) a 表示一个对象,q 表示要计算的百分数(0-100),axis 是轴 # 选出在数组 arr 里大于等于 50% 数的那个数 print("percentile(arr, 50): ", np.percentile(arr, 50)) # 5.0 # 按 1 轴选出大于等于 0% 的数的那个数,即最小值 # [1. 4. 7.] print("percentile(arr, 0, axis=1): ", np.percentile(arr, 0, axis=1)) # 按 1 轴选出大于等于 100% 的数的那个数,即最大值 # [3. 6. 9.] print("percentile(arr, 100, axis=1): ", np.percentile(arr, 100, axis=1)) # 若所求百分数不能刚好对应数组里的数,则会在前后两个数之间取平均值 print(np.percentile(np.array([1., 2., 3., 4., 5., 6.]), 50)) # 3.5 print(np.percentile(np.array([1., 2., 3., 4., 5., 6.]), 70)) # 4.5 # numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False) 计算 a 的中位数 print("median(arr, axis=0): ", np.median(arr, axis=0)) # [4. 5. 6.] print("median(arr, axis=1): ", np.median(arr, axis=1)) # [2. 5. 8.] # numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<no value>) # 返回数组中元素的算术平均值。 如果提供了轴,则沿其计算 print("mean(arr): ", np.mean(arr)) # 5.0 print("mean(arr, axis=1): ", np.mean(arr, axis=1)) # [2. 5. 8.] # numpy.average(a, axis=None, weights=None, returned=False) # 根据 weights 中给出的各自的权重计算数组中元素的加权平均值 # returned=True 则返回权重的和 # 当 weights.shape != a.shape 时必须指定轴 print("average: ", np.average(arr, axis=1, weights=np.array([1, 2, 3]), returned=True)) # numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>) 计算标准差 print("std(arr): ", np.std(arr)) # 2.581988897471611 print("std(arr, axis=1): ", np.std(arr, axis=1)) # [0.81649658 0.81649658 0.81649658] # numpy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>) 计算方差 print("var(arr): ", np.var(arr)) # 6.666666666666667 print("var(arr, axis=0): ", np.var(arr, axis=0)) # [6. 6. 6.]

 

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

NumPy 学习笔记(四)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

NumPy 学习笔记(四)

NumPy 算术函数:  1、numpy.reciprocal(arr) 返回参数逐个元素的倒数  2、numpy.power(one, two) 将第一个输入数组中的元素作为底数,计算它与第二个输入数组中相应元素的幂,即 one^two 
2023-01-31

NumPy 学习笔记(一)

NumPy:  1、NumPy 是一个功能强大的第三方库(需要自己安装),主要用于对多维数组执行计算;     它提供了大量的库函数和操作,可以帮助程序员更轻松地进行数值计算  2、可以和另外两个第三方库 SciPy 和 Matplotli
2023-01-31

NumPy学习笔记(一)

# NumPy### 安装- 通过安装Anaconda安装NumPy,一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项,包含了大量的科学计算相关的包,其中就包括NumPy- 通过pip安装,
2023-01-31

NumPy 学习笔记(三)

NumPy 数组操作:  1、修改数组形状    a、numpy.reshape(arr, newshape, order='C') 在不改变数据的条件下修改形状    b、numpy.ndarray.flat 是一个数组元素迭代器    
2023-01-31

Python学习笔记四(Python

Python os模块提供了一个统一的操作系统接口函数,通过python os模块可以实现对系统本身的命令,文件,目录进行操作,官方参考文档( http://docs.python.org/library/os)。1)os.sep 可以取代
2023-01-31

numpy学习笔记 - numpy常用函

# -*- coding: utf-8 -*-"""主要记录代码,相关说明采用注释形势,供日常总结、查阅使用,不定时更新。Created on Fri Aug 24 19:57:53 2018@author: Dev""" import n
2023-01-30

Redis学习笔记(四)--安全

Redis学习笔记(四)--安全 基于Redis6之前版本 一、设置数据库密码 1、配置文件“redis.conf”修改,需重启服务器 在配置文件中“redis.conf”设置"requirepass 123456" 2、通过"config get requi
Redis学习笔记(四)--安全
2017-03-22

Python学习笔记(四)——数字

数字在Python中,数字并不是一个真正的对象类型,而是一组类似类型的分类。Python不仅支持通常的数据类型(整数和浮点数。),而且能够通过常量去直接创建数字以及处理数字的表达式。 整数和浮点数 复数 固定精度的十进制数
2023-01-31

Python学习笔记整理(四)Pytho

字符串是一个有序的字符集合,用于存储和表现基于文本的信息。常见的字符串常量和表达式T1=‘’ 空字符串T2="diege's" 双引号T3="""...""" 三重引号块T4=r'\temp\diege' Raw字符串 抑制(取消)转义,完
2023-01-31

学习笔记-小甲鱼Python3学习第十四

字符串的方法及注释capitalize()把字符串的第一个字符改为大写casefold()把整个字符串的所有字符改为小写center(width)将字符串居中,并使用空格填充至长度 width 的新字符串count(sub[, start[
2023-01-31

学习笔记-小甲鱼Python3学习第四讲

测试题0.请问以下代码会打印多少次“我爱鱼C”?while 'C':    print('我爱鱼C')当while语句中条件为真的时候,会无限循环下去。所以“我爱鱼C”会一直打印,可以用CTRL+C来结束循环。1.请问以下代码会打印多少次“
2023-01-31

Numpy库的学习(四)

我们今天继续学习一下Numpy库接着前面几次讲的,Numpy中还有一些标准运算a = np.arange(3)print(a)print(np.exp(a))print(np.sqrt(a))exp表示求e的幂次方,比如上面看到的,e的0次
2023-01-31

Redis学习笔记(十四)Sentinel(哨兵)(上)

最近谈到Redis就会听到哨兵模式,工作期间同事也分享过关于哨兵模式的知识,但由于工作忙(给自己找个借口)没有没认真看,现在恶补下,老样子还是分上篇应用,下篇看实现过程,下面我们来看下哨兵到底是啥?哨兵模式(Sentinel)是Redis的高可用解决方案。由一
Redis学习笔记(十四)Sentinel(哨兵)(上)
2019-07-22

Python学习笔记总结(四):异常处理

一、异常基础1、基础try/except/else:【else是可选的】捕捉由代码中的异常并恢复,匹配except里面的错误,并执行except中定义的代码,后继续执行程序(发生异常后,由except捕捉到异常后,不会中断程序,继续执行tr
2023-01-31

GNS3学习笔记

最近在自学CCNA,为了搭建路由模拟器先后下载了Boson Network 、DynamipsGUI用的不是很顺手,后来听朋友推荐GNS3很好用,他们报的CCNP培训班老师用的就是GNS,平时的模拟实验都是用这个完成的,由于我本机已有下好的
2023-01-31

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录