我的编程空间,编程开发者的网络收藏夹
学习永远不晚

如何使用Python检测和识别车牌?

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

如何使用Python检测和识别车牌?

​译者 | 布加迪

审校 | 孙淑娟

车牌检测与识别技术用途广泛,可以用于道路系统、无票停车场、车辆门禁等。这项技术结合了计算机视觉和人工智能。

本文将使用Python创建一个车牌检测和识别程序。该程序对输入图像进行处理,检测和识别车牌,最后显示车牌字符,作为输出内容。

一、创建Python环境

要轻松地完成本教程,您需要熟悉Python基础知识。应先创建程序环境。

在开始编程之前,您需要在环境中安装几个库。打开任何Python IDE,创建一个Python文件。在终端上运行命令以安装相应的库。您应该在计算机上预先安装Python PIP。

  • OpenCV-Python:您将使用这个库对输入图像进行预处理,并显示各个输出图像。pip install OpenCV-Python
  • imutils:您将使用这个库将原始输入图像裁剪成所需的宽度。pip install imutils
  • pytesseract:您将使用这个库提取车牌字符,并将它们转换成字符串。pip install pytesseractpytesseract库依赖Tesseract OCR引擎进行字符识别。

二、如何在您的计算机上安装Tesseract OCR?

Tesseract OCR是一种可以识别语言字符的引擎。在使用pytesseract库之前,您应该在计算机上安装它。步骤如下:

1. 打开任何基于Chrome的浏览器。

2. 下载Tesseract OCR安装程序。

3. 运行安装程序,像安装其他程序一样安装它。

准备好环境并安装tesseract OCR后,您就可以编写程序了。

1.导入库

首先导入在环境中安装的库。导入库让您可以在项目中调用和使用它们的函数。

  • import cv2
  • import imutils
  • import pytesseract

您需要以cv2形式导入OpenCV-Python库。使用与安装时相同的名称导入其他库。

2.获取输入

然后将pytesseract指向安装Tesseract引擎的位置。使用cv2.imread函数将汽车图像作为输入。将图像名称换成您在使用的那个图像的名称。将图像存储在项目所在的同一个文件夹中,以方便操作。

pytesseract.pytesseract.tesseract_cmd = 'C:\Program Files\Tesseract-OCR\tesseract.exe'
original_image = cv2.imread('image3.jpeg')

您可以将下面的输入图像换成想要使用的图像。

3.预处理输入

将图像宽度调整为500像素,然后将图像转换成灰度图像,因为canny边缘检测函数只适用于灰度图像。最后,调用bilateralFilter函数以降低图像噪声。

original_image = imutils.resize(original_image, width=500 )
gray_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)
gray_image = cv2.bilateralFilter(gray_image, 11, 17, 17)

4.在输入端检测车牌

检测车牌是确定汽车上有车牌字符的那部分的过程。

(1)执行边缘检测

先调用cv2.Canny函数,该函数可自动检测预处理图像上的边缘。

edged_image = cv2.Canny(gray_image, 30,200)

我们将通过这些边缘找到轮廓。

(2)寻找轮廓

调用cv2.findContours函数,并传递边缘图像的副本。这个函数将检测轮廓。使用cv2.drawContours函数,绘制原始图像上已检测的轮廓。最后,输出所有可见轮廓已绘制的原始图像。

contours, new = cv2.findContours(edged_image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
img1 = original_image.copy()
cv2.drawContours(img1, contours, -1, (0, 255, 0), 3)
cv2.imshow("img1", img1)

该程序绘制它在汽车图像上找到的所有轮廓。

图片

找到轮廓后,您需要对它们进行筛选,以确定最佳候选轮廓。

(3)筛选轮廓

根据最小面积30对轮廓进行筛选。忽略小于这个面积的轮廓,因为它们不太可能是车牌轮廓。复制原始图像,在图像上绘制前30个轮廓。最后,显示图像。

contours = sorted(contours, key = cv2.contourArea, reverse = True)[:30]
# stores the license plate contour
screenCnt = None
img2 = original_image.copy()

# draws top 30 contours
cv2.drawContours(img2, contours, -1, (0, 255, 0), 3)
cv2.imshow("img2", img2)

现在轮廓数量比开始时要少。唯一绘制的轮廓是那些近似含有车牌的轮廓。

图片

最后,您需要遍历已筛选的轮廓,确定哪一个是车牌。

(4)遍历前30个轮廓

创建遍历轮廓的for循环。寻找有四个角的轮廓,确定其周长和坐标。存储含有车牌的轮廓的图像。最后,在原始图像上绘制车牌轮廓并加以显示。

count = 0
idx = 7

for c in contours:
# approximate the license plate contour
contour_perimeter = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.018 * contour_perimeter, True)

# Look for contours with 4 corners
if len(approx) == 4:
screenCnt = approx

# find the coordinates of the license plate contour
x, y, w, h = cv2.boundingRect(c)
new_img = original_image [ y: y + h, x: x + w]

# stores the new image
cv2.imwrite('./'+str(idx)+'.png',new_img)
idx += 1
break

# draws the license plate contour on original image
cv2.drawContours(original_image , [screenCnt], -1, (0, 255, 0), 3)
cv2.imshow("detected license plate", original_image )

循环之后,程序已识别出含有车牌的那个轮廓。

图片

5.识别检测到的车牌

识别车牌意味着读取已裁剪车牌图像上的字符。加载之前存储的车牌图像并显示它。然后,调用pytesseract.image_to_string函数,传递已裁剪的车牌图像。这个函数将图像中的字符转换成字符串。

# filename of the cropped license plate image
cropped_License_Plate = './7.png'
cv2.imshow("cropped license plate", cv2.imread(cropped_License_Plate))

# converts the license plate characters to string
text = pytesseract.image_to_string(cropped_License_Plate, lang='eng')

已裁剪的车牌如下所示。上面的字符将是您稍后在屏幕上输出的内容。

图片

检测并识别车牌之后,您就可以显示输出了。

6.显示输出

这是最后一步。您将提取的文本输出到屏幕上。该文本含有车牌字符。

print("License plate is:", text)
cv2.waitKey(0)
cv2.destroyAllWindows()

程序的预期输出应该如下图所示:

图片

车牌文本可以在终端上看到。

三、磨砺您的Python技能

用Python检测和识别车牌是一个有意思的项目。它有挑战性,所以应该会帮助您学到关于Python的更多知识。

说到编程,实际运用是掌握一门语言的关键。为了锻炼技能,您需要开发有意思的项目。

原文链接:https://www.makeuseof.com/python-car-license-plates-detect-and-recognize/

以上就是如何使用Python检测和识别车牌?的详细内容,更多请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

如何使用Python检测和识别车牌?

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

YOLOv5构建安全帽检测和识别系统使用详解

这篇文章主要为大家介绍了YOLOv5构建安全帽检测和识别系统使用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-14

基于Python如何进行年龄和性别检测

基于Python如何进行年龄和性别检测,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。前言我将使用 Python 编程语言带您完成使用机器学习进行年龄和性别检测的任务。年龄和
2023-06-22

如何在python中使用OpenCV检测人脸

这期内容当中小编将会给大家带来有关如何在python中使用OpenCV检测人脸,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。Python的优点有哪些1、简单易用,与C/C++、Java、C# 等传统语言相
2023-06-14

python语音识别whisper如何使用

这篇文章主要介绍了python语音识别whisper如何使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇python语音识别whisper如何使用文章都会有所收获,下面我们一起来看看吧。whisper语音识别
2023-07-05

YOLOv5构建安全帽检测和识别系统使用的方法是什么

本文小编为大家详细介绍“YOLOv5构建安全帽检测和识别系统使用的方法是什么”,内容详细,步骤清晰,细节处理妥当,希望这篇“YOLOv5构建安全帽检测和识别系统使用的方法是什么”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习
2023-07-05

如何使用Python识别手势数字

这篇文章主要介绍如何使用Python识别手势数字,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!前言谷歌出了一个开源的、跨平台的、可定制化的机器学习解决方案工具包,给在线流媒体(当然也可以用于普通的视频、图像等)提供了
2023-06-15

如何使用opencv python模糊影像检测效果

小编给大家分享一下如何使用opencv python模糊影像检测效果,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!本文采用拉普拉斯算子计算影像的模糊程度,小于阈值
2023-06-29

在Python中如何使用OpenCV进行直线检测

这篇文章主要介绍了在Python中如何使用OpenCV进行直线检测的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇在Python中如何使用OpenCV进行直线检测文章都会有所收获,下面我们一起来看看吧。1. 引言
2023-06-29

如何使用Python和创建简单语音识别引擎

如何使用Python和创建简单语音识别引擎,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。语音识别是机器或程序识别口语中的单词和短语并将其转换为机器可读格式的能力。通常,这些
2023-06-16

Python如何使用cv2.canny进行图像边缘检测

这篇文章主要介绍了Python如何使用cv2.canny进行图像边缘检测问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-01-28

如何使用深度学习和OpenCV进行目标检测

这篇文章给大家分享的是有关如何使用深度学习和OpenCV进行目标检测的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。使用深度学习和 OpenCV 进行目标检测基于深度学习的对象检测时,您可能会遇到三种主要的对象检测
2023-06-22

如何使用Cron和PHP检测网页是否被篡改

这篇文章主要介绍“如何使用Cron和PHP检测网页是否被篡改”,在日常操作中,相信很多人在如何使用Cron和PHP检测网页是否被篡改问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”如何使用Cron和PHP检测网
2023-06-17

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录