我的编程空间,编程开发者的网络收藏夹
学习永远不晚

【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

文章目录


一、概述

1.1 VRP 问题

车辆路径规划问题(Vehicle Routing Problem,VRP)一般指的是:对一系列发货点和收货点,组织调用一定的车辆,安排适当的行车路线,使车辆有序地通过它们,在满足指定的约束条件下(例如:货物的需求量与发货量,交发货时间,车辆容量限制,行驶里程限制,行驶时间限制等),力争实现一定的目标(如车辆空驶总里程最短,运输总费用最低,车辆按一定时间到达,使用的车辆数最小等)。

下图给出了一个简单的VRP的例子

在这里插入图片描述

1.2 CVRP 问题

最基本的VRP问题叫做带容量约束的车辆路径规划问题(Capacitated Vehicle Routing Problem,CVRP)。在CVRP中,需要考虑每辆车的容量约束、车辆的路径约束和装载量约束

1.3 VRPTW 问题

为了考虑配送时间要求,带时间窗的车辆路径规划问题(Vehicle Routing Problem with Time Window,VRPTW)应运而生。

VRPTW 不仅考虑CVRP的所有约束,还需要考虑时间窗约束,也就是每个顾客对应一个时间窗 [ ei , li ] [e_i,l_i] [ei,li],其中 ei e_i ei li l_i li 分别代表该点的最早到达时间和最晚到达时间。顾客点 i ∈ V i \in V iV 的需求必须要在其时间窗内被送达

VRPTW 已经被证明是 NP-hard 问题,其求解复杂度随着问题规模的增加而急剧增加,求解较为困难。到目前为止,求解 VRPTW 的比较高效的精确算法是分支定价算法和分支定价切割算法。


二、VRPTW 的一般模型

VRPTW 可以建模为一个混合整数规划问题,在给出完整数学模型之前,先引入下面的决策变量:

x i j = { 1 ,如果在最优解中,弧 ( i , j ) 被车辆 k 选中 0 ,其他 s i k =车辆k到达i的时间 模型中涉及的其他参数为: t i j 表示车辆在弧 ( i , j ) 上的行驶时间 M为一个足够大的正数 {x_i}_j=\begin{cases} 1\text{,如果在最优解中,弧}\left( i,j \right) \text{被车辆}k\text{选中}\\ 0\text{,其他}\\ \end{cases} \\ {s_i}_k=\text{车辆}k\text{到达}i\text{的时间} \\ \text{模型中涉及的其他参数为}: \\ {t_i}_j\text{表示车辆在弧}\left( i,j \right) \text{上的行驶时间} \\ M\text{为一个足够大的正数} xij={1,如果在最优解中,弧(i,j)被车辆k选中0,其他sik=车辆k到达i的时间模型中涉及的其他参数为:tij表示车辆在弧(i,j)上的行驶时间M为一个足够大的正数

关于M的取值,实际上可以直接取非常大的正数,但是为了提高求解效率,拉紧约束。我们可以采用下面的取值方法:

M=max{ b i + t i j − a j },∀(i,j)∈A M=max\{b_i+t_{ij}-a_j\} , \forall (i,j)\in A M=max{bi+tijaj},(i,j)A

综合上面引出的决策变量,并参考文献(Desaulniers et al.,2006),给出的 VRPTW 的标准模型如下:

min⁡ ∑ k ∈ K ∑ i ∈ V ∑ i ∈ V c i j x i j k s.t. ∑ k ∈ K ∑ j ∈ V x i j k = 1 , ∀ i ∈ C    ∑ j ∈ V x 0 j k = 1 , ∀ k ∈ K   ∑ i ∈ V x i h k − ∑ j ∈ V x h j k = 0 , ∀ h ∈ C , ∀ k ∈ K    ∑ i ∈ V x i , n + 1 , k = 1 , ∀ k ∈ K   ∑ i ∈ C q i ∑ j ∈ V x i j k = 1 , ∀ k ∈ K    s i k + t i j −M ( 1 −x i j k ) ⩽ s j k    ,∀ ( i , j ) ∈A,∀k∈K    e i ⩽ s i k ⩽ l i    ,∀i∈V,∀k∈K    x i j k ∈ { 0 , 1 }    ,∀ ( i , j ) ∈A,∀k∈K \min \sum_{k\in K}{\sum_{i\in V}{\sum_{i\in V}{{c_i}_j{x_i}_{j_k}}}} \\ s.t. \sum_{k\in K}{\sum_{j\in V}{{x_i}_{j_k}=1 , \forall i\in C}} \\ \,\, \sum_{j\in V}{{x_0}_{j_k}=1 , \forall k\in K} \\ \,\, \sum_{i\in V}{{x_i}_{h_k}-\sum_{j\in V}{{x_h}_{j_k}=0 , \forall h\in C,\forall k\in K}} \\ \,\, \sum_{i\in V}{x_{i,n+1,k}=1 , \forall k\in K} \\ \,\, \sum_{i\in C}{q_i\sum_{j\in V}{{x_i}_{j_k}=1 , \forall k\in K}} \\ \,\, {s_i}_k+{t_i}_j-M\left( 1-{x_i}_{j_k} \right) \leqslant {s_j}_k\,\,, \forall \left( i,j \right) \in A,\forall k\in K \\ \,\, e_i\leqslant {s_i}_k\leqslant l_i\,\,, \forall i\in V,\forall k\in K \\ \,\, {x_i}_{j_k}\in \left\{ 0,1 \right\} \,\,, \forall \left( i,j \right) \in A,\forall k\in K minkKiViVcijxijks.t.kKjVxijk=1,iCjVx0jk=1,kKiVxihkjVxhjk=0,hC,kKiVxi,n+1,k=1,kKiCqijVxijk=1,kKsik+tijM(1xijk)sjk,(i,j)A,kKeisikli,iV,kKxijk{0,1},(i,j)A,kK

其中:

  • 目标函数是为了最小化所有车辆的总行驶成本(距离)
  • 约束1~4保证了每辆车必须从仓库出发,经过一个点就离开那个点,最终返回仓库
  • 约束5为车辆的容量约束
  • 约束6~7是时间窗约束,保证了车辆到达每个顾客点的时间均在时间窗内,点n+1是点o的一个备份,是为了方便实现。

三、Python 调用 Gurobi 建模求解

3.1 Solomn 数据集

Solomn 数据集下载地址

3.2 完整代码

注意,在下面代码中,将弧 i i i 到弧 j j j 所需的时间 t i j t_{ij} tij 和 成本 c i j c_{ij} cij 都当作了弧 i i i 到弧 j j j 所需的距离来看待

# -*- coding: utf-8 -*-## Author: WSKH# Blog: wskh0929.blog.csdn.net# Time: 2023/2/8 11:14# Description: Python 调用 Gurobi 建模求解 VRPTW 问题import timeimport matplotlib.pyplot as pltimport numpy as npfrom gurobipy import *class Data:    customerNum = 0    nodeNum = 0    vehicleNum = 0    capacity = 0    corX = []    corY = []    demand = []    serviceTime = []    readyTime = []    dueTime = []    distanceMatrix = [[]]def readData(path, customerNum):    data = Data()    data.customerNum = customerNum    if customerNum is not None:        data.nodeNum = customerNum + 2    with open(path, 'r') as f:        lines = f.readlines()        count = 0        for line in lines:            count += 1            if count == 5:                line = line[:-1]                s = re.split(r" +", line)                data.vehicleNum = int(s[1])                data.capacity = float(s[2])            elif count >= 10 and (customerNum is None or count <= 10 + customerNum):                line = line[:-1]                s = re.split(r" +", line)                data.corX.append(float(s[2]))                data.corY.append(float(s[3]))                data.demand.append(float(s[4]))                data.readyTime.append(float(s[5]))                data.dueTime.append(float(s[6]))                data.serviceTime.append(float(s[7]))    data.nodeNum = len(data.corX) + 1    data.customerNum = data.nodeNum - 2    # 回路    data.corX.append(data.corX[0])    data.corY.append(data.corY[0])    data.demand.append(data.demand[0])    data.readyTime.append(data.readyTime[0])    data.dueTime.append(data.dueTime[0])    data.serviceTime.append(data.serviceTime[0])    # 计算距离矩阵    data.distanceMatrix = np.zeros((data.nodeNum, data.nodeNum))    for i in range(data.nodeNum):        for j in range(i + 1, data.nodeNum):            distance = math.sqrt((data.corX[i] - data.corX[j]) ** 2 + (data.corY[i] - data.corY[j]) ** 2)            data.distanceMatrix[i][j] = data.distanceMatrix[j][i] = distance    return dataclass Solution:    ObjVal = 0    X = [[]]    S = [[]]    routes = [[]]    routeNum = 0    def __init__(self, data, model):        self.ObjVal = model.ObjVal        # X_ijk        self.X = [[([0] * data.vehicleNum) for _ in range(data.nodeNum)] for _ in range(data.nodeNum)]        # S_ik        self.S = [([0] * data.vehicleNum) for _ in range(data.nodeNum)]        # routes        self.routes = []def getSolution(data, model):    solution = Solution(data, model)    for m in model.getVars():        split_arr = re.split(r"_", m.VarName)        if split_arr[0] == 'X' and m.x > 0.5:            solution.X[int(split_arr[1])][int(split_arr[2])][int(split_arr[3])] = m.x        elif split_arr[0] == 'S' and m.x > 0.5:            solution.S[int(split_arr[1])][int(split_arr[2])] = m.x    for k in range(data.vehicleNum):        i = 0        subRoute = []        subRoute.append(i)        finish = False        while not finish:            for j in range(data.nodeNum):                if solution.X[i][j][k] > 0.5:                    subRoute.append(j)                    i = j                    if j == data.nodeNum - 1:                        finish = True        if len(subRoute) >= 3:            subRoute[-1] = 0            solution.routes.append(subRoute)            solution.routeNum += 1    return solutiondef plot_solution(solution, customer_num):    plt.xlabel("x")    plt.ylabel("y")    plt.title(f"{data_type} : {customer_num} Customers")    plt.scatter(data.corX[0], data.corY[0], c='blue', alpha=1, marker=',', linewidths=3, label='depot')  # 起点    plt.scatter(data.corX[1:-1], data.corY[1:-1], c='black', alpha=1, marker='o', linewidths=3,                label='customer')  # 普通站点    for k in range(solution.routeNum):        for i in range(len(solution.routes[k]) - 1):            a = solution.routes[k][i]            b = solution.routes[k][i + 1]            x = [data.corX[a], data.corX[b]]            y = [data.corY[a], data.corY[b]]            plt.plot(x, y, 'k', linewidth=1)    plt.grid(False)    plt.legend(loc='best')    plt.show()def print_solution(solution, data):    for index, subRoute in enumerate(solution.routes):        distance = 0        load = 0        for i in range(len(subRoute) - 1):            distance += data.distanceMatrix[subRoute[i]][subRoute[i + 1]]            load += data.demand[subRoute[i]]        print(f"Route-{index + 1} : {subRoute} , distance: {distance} , load: {load}")def solve(data):    # 声明模型    model = Model("VRPTW")    # 模型设置    # 关闭输出    model.setParam('OutputFlag', 0)    # 定义变量    X = [[[[] for _ in range(data.vehicleNum)] for _ in range(data.nodeNum)] for _ in range(data.nodeNum)]    S = [[[] for _ in range(data.vehicleNum)] for _ in range(data.nodeNum)]    for i in range(data.nodeNum):        for k in range(data.vehicleNum):            S[i][k] = model.addVar(data.readyTime[i], data.dueTime[i], vtype=GRB.CONTINUOUS, name=f'S_{i}_{k}')            for j in range(data.nodeNum):                X[i][j][k] = model.addVar(vtype=GRB.BINARY, name=f"X_{i}_{j}_{k}")    # 目标函数    obj = LinExpr(0)    for i in range(data.nodeNum):        for j in range(data.nodeNum):            if i != j:                for k in range(data.vehicleNum):                    obj.addTerms(data.distanceMatrix[i][j], X[i][j][k])    model.setObjective(obj, GRB.MINIMIZE)    # 约束1:车辆只能从一个点到另一个点    for i in range(1, data.nodeNum - 1):        expr = LinExpr(0)        for j in range(data.nodeNum):            if i != j:                for k in range(data.vehicleNum):                    if i != 0 and i != data.nodeNum - 1:                        expr.addTerms(1, X[i][j][k])        model.addConstr(expr == 1)    # 约束2:车辆必须从仓库出发    for k in range(data.vehicleNum):        expr = LinExpr(0)        for j in range(1, data.nodeNum):            expr.addTerms(1, X[0][j][k])        model.addConstr(expr == 1)    # 约束3:车辆经过一个点就必须离开一个点    for k in range(data.vehicleNum):        for h in range(1, data.nodeNum - 1):            expr1 = LinExpr(0)            expr2 = LinExpr(0)            for i in range(data.nodeNum):                if h != i:                    expr1.addTerms(1, X[i][h][k])            for j in range(data.nodeNum):                if h != j:                    expr2.addTerms(1, X[h][j][k])            model.addConstr(expr1 == expr2)    # 约束4:车辆最终返回仓库    for k in range(data.vehicleNum):        expr = LinExpr(0)        for i in range(data.nodeNum - 1):            expr.addTerms(1, X[i][data.nodeNum - 1][k])        model.addConstr(expr == 1)    # 约束5:车辆容量约束    for k in range(data.vehicleNum):        expr = LinExpr(0)        for i in range(1, data.nodeNum - 1):            for j in range(data.nodeNum):                if i != 0 and i != data.nodeNum - 1 and i != j:                    expr.addTerms(data.demand[i], X[i][j][k])        model.addConstr(expr <= data.capacity)    # 约束6:时间窗约束    for k in range(data.vehicleNum):        for i in range(data.nodeNum):            for j in range(data.nodeNum):                if i != j:                    model.addConstr(S[i][k] + data.distanceMatrix[i][j] - S[j][k] <= M - M * X[i][j][k])    # 记录求解开始时间    start_time = time.time()    # 求解    model.optimize()    if model.status == GRB.OPTIMAL:        print("-" * 20, "Solved Successfully", '-' * 20)        # 输出求解总用时        print(f"Solve Time: {time.time() - start_time} s")        print(f"Total Travel Distance: {model.ObjVal}")        solution = getSolution(data, model)        plot_solution(solution, data.customerNum)        print_solution(solution, data)    else:        print("此题无解")if __name__ == '__main__':    # 哪个数据集    data_type = "c101"    # 数据集路径    data_path = f'../../data/solomn_data/{data_type}.txt'    # 顾客个数设置(从上往下读取完 customerNum 个顾客为止,例如c101文件中有100个顾客点,    # 但是跑100个顾客点太耗时了,设置这个数是为了只选取一部分顾客点进行计算,用来快速测试算法)    # 如果想用完整的顾客点进行计算,设置为None即可    customerNum = 50    # 一个很大的正数    M = 10000000    # 读取数据    data = readData(data_path, customerNum)    # 输出相关数据    print("-" * 20, "Problem Information", '-' * 20)    print(f'Data Type: {data_type}')    print(f'Node Num: {data.nodeNum}')    print(f'Customer Num: {data.customerNum}')    print(f'Vehicle Num: {data.vehicleNum}')    print(f'Vehicle Capacity: {data.capacity}')    # 建模求解    solve(data)

3.3 运行结果展示

3.3.1 测试案例:c101.txt

设置 customerNum = 20

-------------------- Problem Information --------------------Data Type: c101Node Num: 22Customer Num: 20Vehicle Num: 25Vehicle Capacity: 200.0-------------------- Solved Successfully --------------------Solve Time: 0.2966279983520508 sTotal Travel Distance: 160.81590595966603Route-1 : [0, 20, 13, 17, 18, 19, 15, 16, 14, 12, 0] , distance: 101.32767502613292 , load: 200.0Route-2 : [0, 5, 3, 7, 8, 10, 11, 9, 6, 4, 2, 1, 0] , distance: 59.48823093353308 , load: 160.0

在这里插入图片描述

设置 customerNum = 50

Data Type: c101Node Num: 52Customer Num: 50Vehicle Num: 25Vehicle Capacity: 200.0-------------------- Solved Successfully --------------------Solve Time: 4.383494138717651 sTotal Travel Distance: 363.2468004115909Route-1 : [0, 5, 3, 7, 8, 10, 11, 9, 6, 4, 2, 1, 0] , distance: 59.48823093353308 , load: 160.0Route-2 : [0, 32, 33, 31, 35, 37, 38, 39, 36, 34, 0] , distance: 97.2271627850669 , load: 200.0Route-3 : [0, 43, 42, 41, 40, 44, 46, 45, 48, 50, 49, 47, 0] , distance: 59.843107259523165 , load: 140.0Route-4 : [0, 20, 24, 25, 27, 29, 30, 28, 26, 23, 22, 21, 0] , distance: 50.80359030264955 , load: 170.0Route-5 : [0, 13, 17, 18, 19, 15, 16, 14, 12, 0] , distance: 95.88470913081827 , load: 190.0

在这里插入图片描述

设置 customerNum = None

-------------------- Problem Information --------------------Data Type: c101Node Num: 102Customer Num: 100Vehicle Num: 25Vehicle Capacity: 200.0-------------------- Solved Successfully --------------------Solve Time: 272.5895857810974 sTotal Travel Distance: 828.9368669428341Route-1 : [0, 20, 24, 25, 27, 29, 30, 28, 26, 23, 22, 21, 0] , distance: 50.80359030264955 , load: 170.0Route-2 : [0, 57, 55, 54, 53, 56, 58, 60, 59, 0] , distance: 101.88256760196126 , load: 200.0Route-3 : [0, 5, 3, 7, 8, 10, 11, 9, 6, 4, 2, 1, 75, 0] , distance: 59.618077542105574 , load: 180.0Route-4 : [0, 98, 96, 95, 94, 92, 93, 97, 100, 99, 0] , distance: 95.94313062205805 , load: 190.0Route-5 : [0, 81, 78, 76, 71, 70, 73, 77, 79, 80, 0] , distance: 127.29748041459519 , load: 150.0Route-6 : [0, 32, 33, 31, 35, 37, 38, 39, 36, 34, 0] , distance: 97.2271627850669 , load: 200.0Route-7 : [0, 43, 42, 41, 40, 44, 46, 45, 48, 51, 50, 52, 49, 47, 0] , distance: 64.80747449698114 , load: 160.0Route-8 : [0, 90, 87, 86, 83, 82, 84, 85, 88, 89, 91, 0] , distance: 76.06956532288787 , load: 170.0Route-9 : [0, 13, 17, 18, 19, 15, 16, 14, 12, 0] , distance: 95.88470913081827 , load: 190.0Route-10 : [0, 67, 65, 63, 62, 74, 72, 61, 64, 68, 66, 69, 0] , distance: 59.403108723710105 , load: 200.0

在这里插入图片描述

3.3.2 测试案例:r101.txt

设置 customerNum = 20

-------------------- Problem Information --------------------Data Type: r101Node Num: 22Customer Num: 20Vehicle Num: 25Vehicle Capacity: 200.0-------------------- Solved Successfully --------------------Solve Time: 0.9535932540893555 sTotal Travel Distance: 463.69270291007086Route-1 : [0, 9, 20, 1, 0] , distance: 74.91992978886165 , load: 35.0Route-2 : [0, 12, 3, 4, 0] , distance: 76.18033988749895 , load: 51.0Route-3 : [0, 2, 15, 13, 0] , distance: 62.180339887498945 , load: 38.0Route-4 : [0, 5, 18, 8, 17, 0] , distance: 86.57837545317302 , load: 49.0Route-5 : [0, 14, 16, 6, 0] , distance: 72.40405733948208 , load: 42.0Route-6 : [0, 11, 19, 7, 10, 0] , distance: 91.42966055355615 , load: 50.0

在这里插入图片描述

设置 customerNum = 50

-------------------- Problem Information --------------------Data Type: r101Node Num: 52Customer Num: 50Vehicle Num: 25Vehicle Capacity: 200.0-------------------- Solved Successfully --------------------Solve Time: 4.6791017055511475 sTotal Travel Distance: 946.6603871872358Route-1 : [0, 21, 40, 26, 0] , distance: 43.35023188854984 , load: 37.0Route-2 : [0, 33, 29, 9, 34, 24, 25, 0] , distance: 139.4708769010923 , load: 59.0Route-3 : [0, 39, 23, 41, 22, 4, 0] , distance: 99.11062351878482 , load: 102.0Route-4 : [0, 28, 12, 3, 50, 0] , distance: 51.94121366484106 , load: 61.0Route-5 : [0, 36, 47, 11, 19, 49, 10, 32, 1, 0] , distance: 154.4302586824376 , load: 140.0Route-6 : [0, 42, 14, 44, 16, 38, 37, 17, 0] , distance: 131.9204195702968 , load: 88.0Route-7 : [0, 2, 15, 43, 13, 0] , distance: 72.54724253800985 , load: 45.0Route-8 : [0, 45, 8, 46, 48, 0] , distance: 84.49944230335126 , load: 62.0Route-9 : [0, 5, 7, 18, 6, 0] , distance: 73.5917360311745 , load: 46.0Route-10 : [0, 27, 31, 30, 20, 35, 0] , distance: 95.79834208869767 , load: 81.0

在这里插入图片描述

设置 customerNum = 70

-------------------- Problem Information --------------------Data Type: r101Node Num: 72Customer Num: 70Vehicle Num: 25Vehicle Capacity: 200.0-------------------- Solved Successfully --------------------Solve Time: 189.01783299446106 sTotal Travel Distance: 1182.9787814963945Route-1 : [0, 63, 62, 11, 64, 49, 48, 0] , distance: 125.38755919928242 , load: 116.0Route-2 : [0, 65, 66, 20, 32, 70, 0] , distance: 117.49399251197822 , load: 82.0Route-3 : [0, 28, 12, 26, 0] , distance: 33.795507476994075 , load: 52.0Route-4 : [0, 33, 29, 3, 50, 68, 0] , distance: 90.77710269056311 , load: 82.0Route-5 : [0, 2, 15, 41, 22, 56, 4, 0] , distance: 88.90058825018636 , load: 63.0Route-6 : [0, 27, 69, 31, 30, 51, 9, 34, 35, 1, 0] , distance: 111.48892006549234 , load: 128.0Route-7 : [0, 45, 8, 46, 17, 60, 0] , distance: 93.91701945260407 , load: 31.0Route-8 : [0, 59, 42, 14, 44, 38, 57, 43, 58, 0] , distance: 131.96251141349887 , load: 119.0Route-9 : [0, 39, 23, 67, 55, 54, 24, 25, 0] , distance: 140.03829072128988 , load: 114.0Route-10 : [0, 52, 18, 6, 0] , distance: 41.290161379846566 , load: 24.0Route-11 : [0, 36, 47, 19, 7, 10, 0] , distance: 107.49141646738926 , load: 70.0Route-12 : [0, 21, 40, 53, 0] , distance: 36.27916407668437 , load: 34.0Route-13 : [0, 5, 61, 16, 37, 13, 0] , distance: 64.15654779058515 , load: 89.0

在这里插入图片描述

来源地址:https://blog.csdn.net/weixin_51545953/article/details/128937834

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录