我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python 中的 cupy 库中的 amax 和 max 函数在使用只有一列或只有一行的矩阵时是否会出错?

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python 中的 cupy 库中的 amax 和 max 函数在使用只有一列或只有一行的矩阵时是否会出错?

问题内容

我尝试使用 cupy 进行 gpu 加速来实现用于机器学习和图像分类的 softmax 激活函数。我观察到,对于形状为 nx1 或 1xn 的数组,cupys max 函数会输出错误。然而,对于 nxa 的所有其他情况(其中 n 和 a 都是 1 以外的整数),它工作得很好。

我的代码:

def softmax_(z):
    max_z = cp.max(z, axis=0, keepdims=true)  # problematic max function
    exp_z = cp.exp(z - max_z)  # subtracting the maximum value for numerical stability
    sum_exp_z = cp.sum(exp_z, axis=0, keepdims=true)  # summing up the values
    return exp_z / sum_exp_z  # dividing them to get the softmax

array1 = cp.random.randn(3, 4)  # 3x4
array2 = cp.random.randn(5, 1)  # 5x1

print(softmax_(array1))  # no error
print(softmax_(array2))  # produces an error

我的操作系统错误,我对此缺乏经验:

oserror: [winerror 123] the filename, directory name, or volume label syntax is incorrect: 'c:\\users\\confidential\\.cupy\\jitify_cache\\tmp1pxgjv_g' -> 'c:\\users\\confidential/.cupy/jitify_cache/jitify__200200_12030_2_b3452ffa79e273adadd0403b6b0c05b78158b1e0.json'

数组 1 的输出


output:  [[0.17813469 0.20912114 0.19734889 0.30515635]  [0.42569072
0.47354802 0.4463671  0.20997539]  [0.39617459 0.31733085 0.356284   0.48486825]]

数组2的错误:

../../util_ptx.cuh(38): warning: util_type.cuh: [jitify] File not found 
../../util_ptx.cuh(41): warning: util_debug.cuh: [jitify] File not found
../../thread/thread_load.cuh(40): warning: ../util_ptx.cuh: [jitify] File not found
Traceback (most recent call last):
  File "c:\Users\confidential\Desktop\Projekte\Neural_network2\test.py", line 14, in         
    print(softmax_(array2))
          ^^^^^^^^^^^^^^^^
  File "c:\Users\confidential\Desktop\Projekte\Neural_network2\test.py", line 4, in softmax_
    `max_Z = cp.max(Z, axis=0, keepdims=True)`
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\confidential\PycharmProjects\nunpy\venv\Lib\site-packages\cupy\_statistics\order.py", line 81, in amax
    return a.max(axis=axis, out=out, keepdims=keepdims)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "cupy\_core\core.pyx", line 990, in cupy._core.core._ndarray_base.max
  File "cupy\_core\core.pyx", line 998, in cupy._core.core._ndarray_base.max
  File "cupy\_core\_routines_statistics.pyx", line 43, in cupy._core._routines_statistics._ndarray_max
  File "cupy\_core\_reduction.pyx", line 618, in cupy._core._reduction._SimpleReductionKernel.__call__
  File "cupy\_core\_reduction.pyx", line 370, in cupy._core._reduction._AbstractReductionKernel._call
  File "cupy\_core\_cub_reduction.pyx", line 689, in cupy._core._cub_reduction._try_to_call_cub_reduction
  File "cupy\_core\_cub_reduction.pyx", line 540, in cupy._core._cub_reduction._launch_cub    
  File "cupy\_util.pyx", line 64, in cupy._util.memoize.decorator.ret
  File "cupy\_core\_cub_reduction.pyx", line 240, in cupy._core._cub_reduction._SimpleCubReductionKernel_get_cached_function
  File "cupy\_core\_cub_reduction.pyx", line 223, in cupy._core._cub_reduction._create_cub_reduction_function
  File "cupy\_core\core.pyx", line 2254, in cupy._core.core.compile_with_cache
  File "C:\Users\confidential\PycharmProjects\nunpy\venv\Lib\site-packages\cupy\cuda\compiler.py", line 484, in _compile_module_with_cache
    return _compile_with_cache_cuda(
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\confidential\PycharmProjects\nunpy\venv\Lib\site-packages\cupy\cuda\compiler.py", line 562, in _compile_with_cache_cuda
    ptx, mapping = compile_using_nvrtc(
                   ^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\confidential\PycharmProjects\nunpy\venv\Lib\site-packages\cupy\cuda\compiler.py", line 319, in compile_using_nvrtc
    return _compile(source, options, cu_path,
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\confidential\PycharmProjects\nunpy\venv\Lib\site-packages\cupy\cuda\compiler.py", line 284, in _compile
    options, headers, include_names = _jitify_prep(
                                      ^^^^^^^^^^^^^
  File "C:\Users\confidential\PycharmProjects\nunpy\venv\Lib\site-packages\cupy\cuda\compiler.py", line 233, in _jitify_prep
    jitify._init_module()
  File "cupy\cuda\jitify.pyx", line 212, in cupy.cuda.jitify._init_module
  File "cupy\cuda\jitify.pyx", line 233, in cupy.cuda.jitify._init_module
  File "cupy\cuda\jitify.pyx", line 209, in cupy.cuda.jitify._init_cupy_headers
  File "cupy\cuda\jitify.pyx", line 198, in cupy.cuda.jitify._init_cupy_headers_from_scratch  
  File "cupy\cuda\jitify.pyx", line 128, in cupy.cuda.jitify.dump_cache
OSError: [WinError 123] The syntax for the file name, directory name, or volume label is incorrect: 'C:\\Users\\confidential\\.cupy\\jitify_cache\\tmps16uxq46' -> 'C:\\Users\\confidential/.cupy/jitify_cache/jitify__200200_12030_2_b3452ffa79e273adadd0403b6b0c05b78158b1e0.json'


正确答案


您需要遵循的一些调试步骤。

1)更新cupy

pip install cupy --upgrade

2) 检查权限。 确保运行脚本的用户具有读取和写入 cupy_cache_dir 环境变量中指定的缓存目录的必要权限。

  • 重塑输入数组 如果问题仍然存在,您可以尝试将输入数组重塑为 '(n,)' 的形状,而不是 '(n, 1)''(1, n)'
  • 4)禁用jit编译 您可以尝试通过将 cupy_cache_dir 环境变量设置为有效目录来禁用 jit 编译。

    import cupy as cp
    import os
    
    os.environ['CUPY_CACHE_DIR'] = '/path/to/valid/directory'

    将“/path/to/valid/directory”替换为 cupy 可以成功缓存已编译内核的目录。这可能会帮助您避免 oserror。

    以上就是python 中的 cupy 库中的 amax 和 max 函数在使用只有一列或只有一行的矩阵时是否会出错?的详细内容,更多请关注编程网其它相关文章!

    免责声明:

    ① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

    ② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

    python 中的 cupy 库中的 amax 和 max 函数在使用只有一列或只有一行的矩阵时是否会出错?

    下载Word文档到电脑,方便收藏和打印~

    下载Word文档

    猜你喜欢

    python 中的 cupy 库中的 amax 和 max 函数在使用只有一列或只有一行的矩阵时是否会出错?

    问题内容我尝试使用 cupy 进行 gpu 加速来实现用于机器学习和图像分类的 softmax 激活函数。我观察到,对于形状为 nx1 或 1xn 的数组,cupys max 函数会输出错误。然而,对于 nxa 的所有其他情况(其中 n
    python 中的 cupy 库中的 amax 和 max 函数在使用只有一列或只有一行的矩阵时是否会出错?
    2024-02-06

    编程热搜

    • Python 学习之路 - Python
      一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
      Python 学习之路 - Python
    • chatgpt的中文全称是什么
      chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
      chatgpt的中文全称是什么
    • C/C++中extern函数使用详解
    • C/C++可变参数的使用
      可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
      C/C++可变参数的使用
    • css样式文件该放在哪里
    • php中数组下标必须是连续的吗
    • Python 3 教程
      Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
      Python 3 教程
    • Python pip包管理
      一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
      Python pip包管理
    • ubuntu如何重新编译内核
    • 改善Java代码之慎用java动态编译

    目录