dubbo的超时机制原理
本篇内容主要讲解“dubbo的超时机制原理”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“dubbo的超时机制原理”吧!
在工作中碰到一个业务接口时间比较长,需要修改超时时间,不知道原理,在网上搜索,看到有人说如果你觉得自己了解了dubbo的超时机制,那么问问自己以下问题:
超时是针对消费端还是服务端?
超时在哪设置?
超时设置的优先级是什么?
超时的实现原理是什么?
超时解决的是什么问题 ?
如果连这些都回答不上了,那只能说明还没有完全掌握 dubbo的超时机制。
于是索性就自己本地搭了个环境,研究了一下源码。 先来说一说结论:
超时是针对消费端的,消费端会抛出TimeoutException 而服务器端仅仅是一个 warn日志
超时在消费端、服务器端设置,dubbo会合并这两个设置
consumer方法级别 > provider 方法级别 > consumer 接口级别 > provider 接口级别 > consumer 全局级别 > provider 全局级别。如果都没配置,那么就是dubbo默认的1秒
见下面分析
最主要是宝贵的线程,客户端的用户线程不能因为服务端超时而一直类似wait, 导致无法正常响应其他业务。
一、超时时间设置
全局超时配置
<dubbo:consumer timeout="5000" />
指定接口以及特定方法超时配置
<dubbo:service interface="me.kimi.samples.dubbo.facade.QuestionFacade" ref="questionFacade" timeout="6000">
<dubbo:method name="getQuestionById" timeout="7000"/>
</dubbo:service>
观察控制台打印的注册URL:
consumer://172.16.71.30/me.kimi.samples.dubbo.facade.QuestionFacade?application=demo-consumer&category=providers,configurators,routers&check=false&default.proxy=jdk&default.timeout=5000&dubbo=2.6.2&getQuestionById.timeout=7000&interface=me.kimi.samples.dubbo.facade.QuestionFacade&logger=log4j&methods=getQuestionById&pid=13884&side=consumer&timeout=6000×tamp=1536630294523
可以看到:
default.timeout=5000
timeout=6000
getQuestionById.timeout=7000
分别对应了全局、类级别、方法级别的超时设置。
省略一部分调用链,最终会来到这里 DubboInvoker,读取超时时间:
com.alibaba.dubbo.rpc.protocol.dubbo.DubboInvoker
@Override
protected Result doInvoke(final Invocation invocation) throws Throwable {
RpcInvocation inv = (RpcInvocation) invocation; final String methodName = RpcUtils.getMethodName(invocation);
inv.setAttachment(Constants.PATH_KEY, getUrl().getPath());
inv.setAttachment(Constants.VERSION_KEY, version);
ExchangeClient currentClient; if (clients.length == 1) {
currentClient = clients[0];
} else {
currentClient = clients[index.getAndIncrement() % clients.length];
} try { boolean isAsync = RpcUtils.isAsync(getUrl(), invocation); boolean isOneway = RpcUtils.isOneway(getUrl(), invocation); // 读取超时时间,这里dubbo已经把服务端的timeout参数和消费端的timeout参数合并
int timeout = getUrl().getMethodParameter(methodName, Constants.TIMEOUT_KEY, Constants.DEFAULT_TIMEOUT); if (isOneway) { boolean isSent = getUrl().getMethodParameter(methodName, Constants.SENT_KEY, false);
currentClient.send(inv, isSent);
RpcContext.getContext().setFuture(null); return new RpcResult();
} else if (isAsync) {
ResponseFuture future = currentClient.request(inv, timeout);
RpcContext.getContext().setFuture(new FutureAdapter<Object>(future)); return new RpcResult();
} else {
RpcContext.getContext().setFuture(null); // 返回 DefaultFuture
// get()在没返回值之前会 阻塞 await
return (Result) currentClient.request(inv, timeout).get();
}
} catch (TimeoutException e) { throw new RpcException(RpcException.TIMEOUT_EXCEPTION, "Invoke remote method timeout. method: " + invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
} catch (RemotingException e) { throw new RpcException(RpcException.NETWORK_EXCEPTION, "Failed to invoke remote method: " + invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
}
}
看一下参数获取的方法:
public int getMethodParameter(String method, String key, int defaultValue) { // 首先查 getQuestionById.timeout
String methodKey = method + "." + key; // 从数字缓存中先获取,不需要每次都 parseInt
Number n = getNumbers().get(methodKey); if (n != null) { return n.intValue();
} // 没得话,去取字符串值
String value = getMethodParameter(method, key); if (value == null || value.length() == 0) { // 三个地方都没配置,返回默认值,默认是1秒
return defaultValue;
} // 放入缓存中
int i = Integer.parseInt(value);
getNumbers().put(methodKey, i); return i;
}
public String getMethodParameter(String method, String key) { // 首先查 getQuestionById.timeout
String value = parameters.get(method + "." + key); if (value == null || value.length() == 0) { // 没有设定方法级别的,去查接口级别或全局的
return getParameter(key);
} return value;
}
public String getParameter(String key) { // 接口级别去查 timeout
String value = parameters.get(key); if (value == null || value.length() == 0) { // 没的话查询全局级别 default.timeout
value = parameters.get(Constants.DEFAULT_KEY_PREFIX + key);
} return value;
}
从代码中可以看出超时时间的设置:方法级别 > 接口级别 > 全局级别。
这里要特殊提一点,就是dubbo会合并服务端客户端的设置。
修改客户端配置, 只留下全局设置:
<dubbo:consumer timeout="2000" proxy="jdk"/>
<dubbo:service interface="me.kimi.samples.dubbo.facade.QuestionFacade" ref="questionFacade"/>
服务端配置如下:
<dubbo:provider timeout="10000" accepts="500"/>
<!-- service implementation, as same as regular local bean -->
<bean id="questionFacade" class="me.kimi.samples.dubbo.provider.service.QuestionFacadeImpl"/>
<!-- declare the service interface to be exported -->
<dubbo:service interface="me.kimi.samples.dubbo.facade.QuestionFacade" ref="questionFacade" timeout="9000"/>
最后在客户端调用的时候,发现timeout是9000ms, debug发现客户端合并了url, 合并结果如下:
dubbo://172.16.71.30:20880/me.kimi.samples.dubbo.facade.QuestionFacade?anyhost=true&application=demo-provider&default.accepts=500&default.timeout=10000&dubbo=2.6.2&generic=false&interface=me.kimi.samples.dubbo.facade.QuestionFacade&logger=log4j&methods=getQuestionById&pid=17508&side=provider&timeout=9000×tamp=1536660132286
查看源码 com.alibaba.dubbo.registry.integration.RegistryDirectory#mergeUrl:
private URL mergeUrl(URL providerUrl) {
providerUrl = ClusterUtils.mergeUrl(providerUrl, queryMap); // Merge the consumer side parameters
List<Configurator> localConfigurators = this.configurators; // local reference
if (localConfigurators != null && !localConfigurators.isEmpty()) { for (Configurator configurator : localConfigurators) {
providerUrl = configurator.configure(providerUrl);
}
}
providerUrl = providerUrl.addParameter(Constants.CHECK_KEY, String.valueOf(false)); // Do not check whether the connection is successful or not, always create Invoker!
// 这里就是合并服务器端的参数,所以除了timeout参数,其他很多参数也是这样的
// 即已客户端优先
this.overrideDirectoryUrl = this.overrideDirectoryUrl.addParametersIfAbsent(providerUrl.getParameters());
if ((providerUrl.getPath() == null || providerUrl.getPath().length() == 0)
&& "dubbo".equals(providerUrl.getProtocol())) { // Compatible version 1.0
//fix by tony.chenl DUBBO-44
String path = directoryUrl.getParameter(Constants.INTERFACE_KEY); if (path != null) { int i = path.indexOf('/'); if (i >= 0) {
path = path.substring(i + 1);
}
i = path.lastIndexOf(':'); if (i >= 0) {
path = path.substring(0, i);
}
providerUrl = providerUrl.setPath(path);
}
} return providerUrl;
}
所以综合,超时时间的优先级为:
consumer方法级别 > provider 方法级别 > consumer 接口级别 > provider 接口级别 > consumer 全局级别 > provider 全局级别。
二、超时实现
有了超时时间,那么dubbo是怎么实现超时的呢?
再看上面的DubboInvoker,对于一般的有返回值的调用,最终调用:
return (Result) currentClient.request(inv, timeout).get();
先看一下request方法,来到 com.alibaba.dubbo.remoting.exchange.support.header.HeaderExchangeChannel的Request方法:
@Override
public ResponseFuture request(Object request, int timeout) throws RemotingException { if (closed) { throw new RemotingException(this.getLocalAddress(), null, "Failed to send request " + request + ", cause: The channel " + this + " is closed!");
} // create request.
Request req = new Request();
req.setVersion("2.0.0");
req.setTwoWay(true);
req.setData(request);
DefaultFuture future = new DefaultFuture(channel, req, timeout); try {
channel.send(req);
} catch (RemotingException e) {
future.cancel(); throw e;
} return future;
}
重点是 DefaultFuture:
static {
Thread th = new Thread(new RemotingInvocationTimeoutScan(), "DubboResponseTimeoutScanTimer");
th.setDaemon(true);
th.start();
}
类加载的时候会启动一个超时扫描线程:
public DefaultFuture(Channel channel, Request request, int timeout) { this.channel = channel; this.request = request; this.id = request.getId(); this.timeout = timeout > 0 ? timeout : channel.getUrl().getPositiveParameter(Constants.TIMEOUT_KEY, Constants.DEFAULT_TIMEOUT); // 每个 DefaultFuture 都有一个 id, 对应当前请求id, 然后被放到 静态Map中。
FUTURES.put(id, this); // id 对应的 Channel 也存起来,后续超时需要处理
CHANNELS.put(id, channel);
}
再看下get方法:
@Overridepublic Object get() throws RemotingException { return get(timeout);
}@Overridepublic Object get(int timeout) throws RemotingException { if (timeout <= 0) {
timeout = Constants.DEFAULT_TIMEOUT;
} if (!isDone()) { long start = System.currentTimeMillis();
lock.lock(); try { while (!isDone()) { // 这里可以看到在调用的时候需要等待
done.await(timeout, TimeUnit.MILLISECONDS); if (isDone() || System.currentTimeMillis() - start > timeout) { break;
}
}
} catch (InterruptedException e) { throw new RuntimeException(e);
} finally {
lock.unlock();
}
if (!isDone()) { throw new TimeoutException(sent > 0, channel, getTimeoutMessage(false));
}
} // 处理返回值
// 线程扫描超时,正常返回都在这里
return returnFromResponse();
}
从上面代码上可以看到,get方法,会使当前线程挂起等待。那么什么时候会被恢复呢,可以想到两类情况:
超时
服务端正常返回
那么回过头来看看超时扫描线程,看一下扫描线程做了什么事情:
private static class RemotingInvocationTimeoutScan implements Runnable { @Override
public void run() { while (true) { try { // 就是去扫描DefaultFuture列表
for (DefaultFuture future : FUTURES.values()) { if (future == null || future.isDone()) { continue;
} // 如果future未完成,且超时
if (System.currentTimeMillis() - future.getStartTimestamp() > future.getTimeout()) { // 创建一个异常的Response
Response timeoutResponse = new Response(future.getId()); // set timeout status.
timeoutResponse.setStatus(future.isSent() ? Response.SERVER_TIMEOUT : Response.CLIENT_TIMEOUT);
timeoutResponse.setErrorMessage(future.getTimeoutMessage(true)); // 处理异常
DefaultFuture.received(future.getChannel(), timeoutResponse);
}
}
Thread.sleep(30);
} catch (Throwable e) {
logger.error("Exception when scan the timeout invocation of remoting.", e);
}
}
}
}
看下 received方法
public static void received(Channel channel, Response response) { try {
DefaultFuture future = FUTURES.remove(response.getId()); if (future != null) {
future.doReceived(response);
} else {
logger.warn("The timeout response finally returned at "
+ (new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").format(new Date()))
+ ", response " + response
+ (channel == null ? "" : ", channel: " + channel.getLocalAddress()
+ " -> " + channel.getRemoteAddress()));
}
} finally {
CHANNELS.remove(response.getId());
}
}
private void doReceived(Response res) {
lock.lock(); try { // 设置响应
// 这样isDone就是true了
response = res; if (done != null) { // 恢复挂起的线程
done.signal();
}
} finally {
lock.unlock();
} if (callback != null) {
invokeCallback(callback);
}
}
显然这里扫描线程把用户请求线程恢复了。 恢复以后,顺着刚才的 DefaultFuture 的get方法,来到 returnFromResponse方法:
private Object returnFromResponse() throws RemotingException {
Response res = response; if (res == null) { throw new IllegalStateException("response cannot be null");
} // 正常返回,返回 Result 对象
if (res.getStatus() == Response.OK) { return res.getResult();
} // 超时处理
if (res.getStatus() == Response.CLIENT_TIMEOUT || res.getStatus() == Response.SERVER_TIMEOUT) { // 重新抛出异常
throw new TimeoutException(res.getStatus() == Response.SERVER_TIMEOUT, channel, res.getErrorMessage());
} throw new RemotingException(channel, res.getErrorMessage());
}
超时扫描线程,构建了一个 超时 Response, 在这里抛出 超时异常。
超时抛异常是看见了,那么正常返回是怎么处理的呢,因为 done还 await在那里。 这里暂时不细说dubbo其他组件的原理,只要知道在网络事件完成(即服务器端在规定时间内正常返回)的时候,会有个回调,在整个回调过程中,最终会回调到 com.alibaba.dubbo.remoting.exchange.support.header.HeaderExchangeHandler 的 received 方法,看下代码:
@Overridepublic void received(Channel channel, Object message) throws RemotingException {
channel.setAttribute(KEY_READ_TIMESTAMP, System.currentTimeMillis());
ExchangeChannel exchangeChannel = HeaderExchangeChannel.getOrAddChannel(channel); try { if (message instanceof Request) { // handle request.
Request request = (Request) message; if (request.isEvent()) {
handlerEvent(channel, request);
} else { if (request.isTwoWay()) {
Response response = handleRequest(exchangeChannel, request);
channel.send(response);
} else {
handler.received(exchangeChannel, request.getData());
}
}
} else if (message instanceof Response) { // 请求会回调到这里
handleResponse(channel, (Response) message);
} else if (message instanceof String) { if (isClientSide(channel)) {
Exception e = new Exception("Dubbo client can not supported string message: " + message + " in channel: " + channel + ", url: " + channel.getUrl());
logger.error(e.getMessage(), e);
} else {
String echo = handler.telnet(channel, (String) message); if (echo != null && echo.length() > 0) {
channel.send(echo);
}
}
} else {
handler.received(exchangeChannel, message);
}
} finally {
HeaderExchangeChannel.removeChannelIfDisconnected(channel);
}
}
处理响应:
static void handleResponse(Channel channel, Response response) throws RemotingException { // 不是心跳包,是正常的业务返回
if (response != null && !response.isHeartbeat()) {
DefaultFuture.received(channel, response);
}
}
到此,相信大家对“dubbo的超时机制原理”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341