我的编程空间,编程开发者的网络收藏夹
学习永远不晚

【考研数学】线性代数第六章 —— 二次型(3,正定矩阵与正定二次型)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

【考研数学】线性代数第六章 —— 二次型(3,正定矩阵与正定二次型)

文章目录


一、基本概念

1.1 引例

(1)二次型 f ( x1 , x2 , x3 ) = x12 + 3 x22 + 2 x32 = X T AX f(x_1,x_2,x_3)=x_1^2+3x_2^2+2x_3^2=\pmb{X^TAX} f(x1,x2,x3)=x12+3x22+2x32=XTAX 有如下特点:

  1. 对任意的 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3 ,有 f( x 1 , x 2 , x 3 )≥0 f(x_1,x_2,x_3)\geq0 f(x1,x2,x3)0
  2. f( x 1 , x 2 , x 3 )=0 f(x_1,x_2,x_3)=0 f(x1,x2,x3)=0 当且仅当 x 1 = x 2 = x 3 =0 x_1=x_2=x_3=0 x1=x2=x3=0 ,或对任意 X ≠ 0 \pmb{X}\ne\pmb{0} X=0 ,有 X T A X >0 \pmb{X^TAX}>0 XTAX>0

(2)二次型 f ( x1 , x2 , x3 ) = x12 − 2 x1 x2 + 4 x22 + 6 x32 = ( x1 − x2 )2 + 3 x22 + 6 x32 = X T AX f(x_1,x_2,x_3)=x_1^2-2x_1x_2+4x_2^2+6x_3^2=(x_1-x_2)^2+3x_2^2+6x_3^2=\pmb{X^TAX} f(x1,x2,x3)=x122x1x2+4x22+6x32=(x1x2)2+3x22+6x32=XTAX 有如下特点:

  1. 对任意的 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3 ,有 f( x 1 , x 2 , x 3 )≥0 f(x_1,x_2,x_3)\geq0 f(x1,x2,x3)0
  2. f( x 1 , x 2 , x 3 )=0 f(x_1,x_2,x_3)=0 f(x1,x2,x3)=0 当且仅当 x 1 = x 2 = x 3 =0 x_1=x_2=x_3=0 x1=x2=x3=0 ,或对任意 X ≠ 0 \pmb{X}\ne\pmb{0} X=0 ,有 X T A X >0 \pmb{X^TAX}>0 XTAX>0

1.2 正定二次型概念

对二次型 f ( x1 , x2 , ⋯   , xn ) = X T AX f(x_1,x_2,\cdots,x_n)=\pmb{X^TAX} f(x1,x2,,xn)=XTAX ,若对任意 X ≠ 0 \pmb{X}\ne\pmb{0} X=0 ,总有 X T AX > 0 \pmb{X^TAX}>0 XTAX>0 ,称 X T AX \pmb{X^TAX} XTAX 为正定二次型, A \pmb{A} A 为正定矩阵。


二、正定二次型的判别

定理 1 —— 二次型 X T AX \pmb{X^TAX} XTAX 为正定二次型的充分必要条件是 A \pmb{A} A 的特征值均为正数。

定理 2 —— 二次型 X T AX \pmb{X^TAX} XTAX 为正定二次型的充分必要条件是 A \pmb{A} A 的顺序主子式都大于 0 ,即 a 11 >0, ∣ a 11 a 12 a 21 a 22 ∣ >0,⋯   ,∣ A ∣>0. a_{11}>0,\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}>0,\cdots,|\pmb{A}|>0. a11>0, a11a21a12a22 >0,,A>0. 定理 3 —— 设 A T =A \pmb{A^T=A} AT=A ,则 A \pmb{A} A 为正定矩阵的充分必要条件是存在可逆矩阵 B \pmb{B} B 使得 A= B T B \pmb{A=B^TB} A=BTB

定理 4 —— 设 A T =A \pmb{A^T=A} AT=A ,则 A \pmb{A} A 为正定矩阵的充分必要条件是 A \pmb{A} A E \pmb{E} E 合同。

定理 5 —— 设 A T =A \pmb{A^T=A} AT=A ,则 A \pmb{A} A 为正定矩阵的充分必要条件是 A \pmb{A} A 的正惯性指数为 n n n

定理 6 —— 设 A,B \pmb{A,B} A,B 分别为 m m m 阶和 n n n 阶实对称矩阵,则 [ A 0 0 B ] \begin{bmatrix} \pmb{A} & \pmb{0} \\ \pmb{0} & \pmb{B} \end{bmatrix} [A00B] 为正定矩阵的充分必要条件为 A,B \pmb{A,B} A,B 均为正定矩阵。

二次型 f ( X ) = X T AX f(\pmb{X})=\pmb{X^TAX} f(X)=XTAX 正定的必要条件是 a i i > 0 ( i = 1 , 2 , ⋯   , n ) ; ∣ A ∣ > 0 a_{ii}>0(i=1,2,\cdots,n);|A|>0 aii>0(i=1,2,,n);A>0

即可以先看看对角线元素和行列式是否大于 0 ,作初步判别。

A \pmb{A} A 为正定矩阵,则其一定可逆;且 A − 1 , A ∗ \pmb{A}^{-1},\pmb{A}^* A1,A 均正定。

A,B \pmb{A,B} A,B 都是正定矩阵,则 A + B \pmb{A}+\pmb{B} A+B 也是正定矩阵。


写在最后

那线性代数到这,理论也就基本结束了。

来源地址:https://blog.csdn.net/Douglassssssss/article/details/133977728

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

【考研数学】线性代数第六章 —— 二次型(3,正定矩阵与正定二次型)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

目录