我的编程空间,编程开发者的网络收藏夹
学习永远不晚

对Keras自带Loss Function的深入研究

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

对Keras自带Loss Function的深入研究

本文研究Keras自带的几个常用的Loss Function。

1. categorical_crossentropy VS. sparse_categorical_crossentropy

注意到二者的主要差别在于输入是否为integer tensor。在文档中,我们还可以找到关于二者如何选择的描述:

解释一下这里的Integer target 与 Categorical target,实际上Integer target经过独热编码就变成了Categorical target,举例说明:


(类别数5)
Integer target: [1,2,4]
Categorical target: [[0. 1. 0. 0. 0.]
					 [0. 0. 1. 0. 0.]
					 [0. 0. 0. 0. 1.]]

在Keras中提供了to_categorical方法来实现二者的转化:


from keras.utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=None)

注意categorical_crossentropy和sparse_categorical_crossentropy的输入参数output,都是softmax输出的tensor。我们都知道softmax的输出服从多项分布,

因此categorical_crossentropy和sparse_categorical_crossentropy应当应用于多分类问题。

我们再看看这两个的源码,来验证一下:


https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py
--------------------------------------------------------------------------------------------------------------------
def categorical_crossentropy(target, output, from_logits=False, axis=-1):
  """Categorical crossentropy between an output tensor and a target tensor.
  Arguments:
      target: A tensor of the same shape as `output`.
      output: A tensor resulting from a softmax
          (unless `from_logits` is True, in which
          case `output` is expected to be the logits).
      from_logits: Boolean, whether `output` is the
          result of a softmax, or is a tensor of logits.
      axis: Int specifying the channels axis. `axis=-1` corresponds to data
          format `channels_last', and `axis=1` corresponds to data format
          `channels_first`.
  Returns:
      Output tensor.
  Raises:
      ValueError: if `axis` is neither -1 nor one of the axes of `output`.
  """
  rank = len(output.shape)
  axis = axis % rank
  # Note: nn.softmax_cross_entropy_with_logits_v2
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # scale preds so that the class probas of each sample sum to 1
    output = output / math_ops.reduce_sum(output, axis, True)
    # manual computation of crossentropy
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_)
    return -math_ops.reduce_sum(target * math_ops.log(output), axis)
  else:
    return nn.softmax_cross_entropy_with_logits_v2(labels=target, logits=output)
--------------------------------------------------------------------------------------------------------------------
def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1):
  """Categorical crossentropy with integer targets.
  Arguments:
      target: An integer tensor.
      output: A tensor resulting from a softmax
          (unless `from_logits` is True, in which
          case `output` is expected to be the logits).
      from_logits: Boolean, whether `output` is the
          result of a softmax, or is a tensor of logits.
      axis: Int specifying the channels axis. `axis=-1` corresponds to data
          format `channels_last', and `axis=1` corresponds to data format
          `channels_first`.
  Returns:
      Output tensor.
  Raises:
      ValueError: if `axis` is neither -1 nor one of the axes of `output`.
  """
  rank = len(output.shape)
  axis = axis % rank
  if axis != rank - 1:
    permutation = list(range(axis)) + list(range(axis + 1, rank)) + [axis]
    output = array_ops.transpose(output, perm=permutation)
  # Note: nn.sparse_softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
    output = math_ops.log(output)
  output_shape = output.shape
  targets = cast(flatten(target), 'int64')
  logits = array_ops.reshape(output, [-1, int(output_shape[-1])])
  res = nn.sparse_softmax_cross_entropy_with_logits(
      labels=targets, logits=logits)
  if len(output_shape) >= 3:
    # If our output includes timesteps or spatial dimensions we need to reshape
    return array_ops.reshape(res, array_ops.shape(output)[:-1])
  else:
    return res

categorical_crossentropy计算交叉熵时使用的是nn.softmax_cross_entropy_with_logits_v2( labels=targets, logits=logits),而sparse_categorical_crossentropy使用的是nn.sparse_softmax_cross_entropy_with_logits( labels=targets, logits=logits),二者本质并无区别,只是对输入参数logits的要求不同,v2要求的是logits与labels格式相同(即元素也是独热的),而sparse则要求logits的元素是个数值,与上面Integer format和Categorical format的对比含义类似。

综上所述,categorical_crossentropy和sparse_categorical_crossentropy只不过是输入参数target类型上的区别,其loss的计算在本质上没有区别,就是交叉熵;二者是针对多分类(Multi-class)任务的。

2. Binary_crossentropy

二元交叉熵,从名字中我们可以看出,这个loss function可能是适用于二分类的。文档中并没有详细说明,那么直接看看源码吧:


https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py
--------------------------------------------------------------------------------------------------------------------
def binary_crossentropy(target, output, from_logits=False):
  """Binary crossentropy between an output tensor and a target tensor.
  Arguments:
      target: A tensor with the same shape as `output`.
      output: A tensor.
      from_logits: Whether `output` is expected to be a logits tensor.
          By default, we consider that `output`
          encodes a probability distribution.
  Returns:
      A tensor.
  """
  # Note: nn.sigmoid_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # transform back to logits
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
    output = math_ops.log(output / (1 - output))
  return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)

可以看到源码中计算使用了nn.sigmoid_cross_entropy_with_logits,熟悉tensorflow的应该比较熟悉这个损失函数了,它可以用于简单的二分类,也可以用于多标签任务,而且应用广泛,在样本合理的情况下(如不存在类别不均衡等问题)的情况下,通常可以直接使用。

补充:keras自定义loss function的简单方法

首先看一下Keras中我们常用到的目标函数(如mse,mae等)是如何定义的


from keras import backend as K
def mean_squared_error(y_true, y_pred):
    return K.mean(K.square(y_pred - y_true), axis=-1)
def mean_absolute_error(y_true, y_pred):
    return K.mean(K.abs(y_pred - y_true), axis=-1)
def mean_absolute_percentage_error(y_true, y_pred):
    diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), np.inf))
    return 100. * K.mean(diff, axis=-1)
def categorical_crossentropy(y_true, y_pred):
    '''Expects a binary class matrix instead of a vector of scalar classes.
    '''
    return K.categorical_crossentropy(y_pred, y_true)
def sparse_categorical_crossentropy(y_true, y_pred):
    '''expects an array of integer classes.
    Note: labels shape must have the same number of dimensions as output shape.
    If you get a shape error, add a length-1 dimension to labels.
    '''
    return K.sparse_categorical_crossentropy(y_pred, y_true)
def binary_crossentropy(y_true, y_pred):
    return K.mean(K.binary_crossentropy(y_pred, y_true), axis=-1)
def kullback_leibler_divergence(y_true, y_pred):
    y_true = K.clip(y_true, K.epsilon(), 1)
    y_pred = K.clip(y_pred, K.epsilon(), 1)
    return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
def poisson(y_true, y_pred):
    return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
def cosine_proximity(y_true, y_pred):
    y_true = K.l2_normalize(y_true, axis=-1)
    y_pred = K.l2_normalize(y_pred, axis=-1)
    return -K.mean(y_true * y_pred, axis=-1)

所以仿照以上的方法,可以自己定义特定任务的目标函数。比如:定义预测值与真实值的差


from keras import backend as K
def new_loss(y_true,y_pred):
    return K.mean((y_pred-y_true),axis = -1)

然后,应用你自己定义的目标函数进行编译


from keras import backend as K
def my_loss(y_true,y_pred):
    return K.mean((y_pred-y_true),axis = -1)
model.compile(optimizer=optimizers.RMSprop(lr),loss=my_loss,
metrics=['accuracy'])

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

对Keras自带Loss Function的深入研究

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

深入研究MySQL的自动提交功能

标题:深入研究MySQL的自动提交功能在使用MySQL数据库进行开发和管理时,自动提交功能是一个非常重要的特性。它决定了每一条SQL语句在执行后是否立即提交事务,对于事务的原子性和数据一致性具有重要影响。本文将深入研究MySQL的自动提交
深入研究MySQL的自动提交功能
2024-03-15

深入研究:Sybase和Oracle数据库的技术对比

Sybase和Oracle是两个常见的关系型数据库管理系统,它们在企业领域被广泛应用。本文将深入研究Sybase和Oracle数据库的技术对比,包括各自的优势、劣势和适用场景,并给出具体的代码示例进行比较。一、Sybase数据库Syba
深入研究:Sybase和Oracle数据库的技术对比
2024-03-08

研究绝对定位概念和原理的深入分析

绝对定位:一种精确控制元素位置的CSS属性引言:在网页设计中,精确控制元素位置是非常重要的。而绝对定位是CSS中一种非常便捷的方法来实现这一目标。绝对定位可以让我们将元素从正常的文档流中脱离出来,并且以自定义的位置进行放置。本文将深入解析
研究绝对定位概念和原理的深入分析
2024-01-23

深入研究绝对值编码器定位程序的技术特征

绝对值编码器定位程序是现代自动化控制系统中广泛应用的一种技术,在工业控制、机器人技术和精密机械等领域都有重要的应用。本文将探究绝对值编码器定位程序的技术特点,包括编码器工作原理、高精度定位、多轴同步等方面的特点。首先,绝对值编码器是一种能
深入研究绝对值编码器定位程序的技术特征
2024-01-18

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录