mysql索引数据结构一般如何使用
下文主要给大家带来mysql索引数据结构一般如何使用,希望这些内容能够带给大家实际用处,这也是我编辑mysql索引数据结构一般如何使用这篇文章的主要目的。好了,废话不多说,大家直接看下文吧。
MyISAM使用B-Tree实现主键索引、唯一索引和非主键索引。
InnoDB中非主键索引使用的是B-Tree数据结构,而主键索引使用的是B+Tree。
B-Tree
B-tree(多路搜索树,并不是二叉的)是一种常见的数据结构。使用B-tree结构可以显著减少定位记录时所经历的中间过程,从而加快存取速度。按照翻译,B 通常认为是Balance的简称。这个数据结构一般用于数据库的索引,综合效率较高。
性能(推荐学习:MySQL视频教程)
B-tree有以下特性:
1、关键字集合分布在整棵树中;
2、任何一个关键字出现且只出现在一个结点中;
3、搜索有可能在非叶子结点结束;
4、其搜索性能等价于在关键字全集内做一次二分查找;
5、自动层次控制;
B+Tree
不同的存储引擎可能使用不同的数据结构存储,InnoDB使用的是B+Tree;
那什么是B+Tree呢?
B+Tree是应文件系统所需而出的一种B-Tree的变型树,一棵m阶的B+树和m阶的B-树的差异在于:
B+和B-(即B)是因为每个结点上的关键字不同。一个多一个,一个少一个。
对于B+树,其结点结构与B-tree相同,不同的是各结点的关键字和可以拥有的子结点数。如m阶B+树中,每个结点至多可以拥有m个子结点。非根结点至少有[m/2]个子结点,而关键字个数比B-tree多一个,为[m/2]~m。
这两种处理索引的数据结构的不同之处:
1。B树中同一键值不会出现多次,并且它有可能出现在叶结点,也有可能出现在非叶结点中。而B+树的键一定会出现在叶结点中,并且有可能在非叶结点中也有可能重复出现,以维持B+树的平衡。
2。因为B树键位置不定,且在整个树结构中只出现一次,虽然可以节省存储空间,但使得在插入、删除操作复杂度明显增加。B+树相比来说是一种较好的折中。
3。B树的查询效率与键在树中的位置有关,最大时间复杂度与B+树相同(在叶结点的时候),最小时间复杂度为1(在根结点的时候)。而B+树的时间复杂度对某建成的树是固定的。
对于以上关于mysql索引数据结构一般如何使用,大家是不是觉得非常有帮助。如果需要了解更多内容,请继续关注我们的行业资讯,相信你会喜欢上这些内容的。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341