模型训练时GPU利用率太低如何解决
今天小编给大家分享一下模型训练时GPU利用率太低如何解决的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
模型训练时GPU利用率太低的原因
最近在训练SSD模型时发现GPU的利用率只有8%,而CPU的利用率却非常高。
后来了解到,一般使用CPU进行数据的读取和预处理,而使用GPU进行模型的正向传播和反向传播。由于CPU数据读取跟不上(读到内存+多线程+二进制文件),而GPU的处理速度太快,导致GPU的利用率不高。
最后总结一下,有的时候模型训练慢并不是因为显卡不行或者模型太大,而是在跑模型过程中有一些其他的操作导致速度很慢,尤其是文件的IO操作,这会导致GPU得不到连续性使用,整体速度特别慢。
问题的解决办法
1,关闭一些日志记录,减少日志IO操作频率。
2,NVIDA提供了DALI库,可以将数据处理转移到GPU上。
模型训练GPU利用率低,占用低怎么破
GPU 的显存占用和算力利用直接影响模型的训练速度
GPU 显存占用低问题
提高batch_size
提高模型输入尺寸
增加模型深度
推荐:优先提高batch_size, 其他方法会对模型结构产生影响
GPU利用率低问题
提高线程数
打开pin_memory
# 在pytorch 加载数据时提高线程数,打开pin_memorytorch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
以上就是“模型训练时GPU利用率太低如何解决”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注编程网行业资讯频道。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341