我的编程空间,编程开发者的网络收藏夹
学习永远不晚

手把手教你实现PyTorch的MNIST数据集

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

手把手教你实现PyTorch的MNIST数据集

概述

MNIST 包含 0~9 的手写数字, 共有 60000 个训练集和 10000 个测试集. 数据的格式为单通道 28*28 的灰度图.

获取数据


def get_data():
    """获取数据"""

    # 获取测试集
    train = torchvision.datasets.MNIST(root="./data", train=True, download=True,
                                       transform=torchvision.transforms.Compose([
                                           torchvision.transforms.ToTensor(),  # 转换成张量
                                           torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                       ]))
    train_loader = DataLoader(train, batch_size=batch_size)  # 分割测试集

    # 获取测试集
    test = torchvision.datasets.MNIST(root="./data", train=False, download=True,
                                      transform=torchvision.transforms.Compose([
                                          torchvision.transforms.ToTensor(),  # 转换成张量
                                          torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                      ]))
    test_loader = DataLoader(test, batch_size=batch_size)  # 分割训练

    # 返回分割好的训练集和测试集
    return train_loader, test_loader

网络模型


class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()

        # 卷积层
        self.conv1 = torch.nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
        self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))

        # Dropout层
        self.dropout1 = torch.nn.Dropout(0.25)
        self.dropout2 = torch.nn.Dropout(0.5)

        # 全连接层
        self.fc1 = torch.nn.Linear(9216, 128)
        self.fc2 = torch.nn.Linear(128, 10)

    def forward(self, x):
        """前向传播"""
        
        # [b, 1, 28, 28] => [b, 32, 26, 26]
        out = self.conv1(x)
        out = F.relu(out)
        
        # [b, 32, 26, 26] => [b, 64, 24, 24]
        out = self.conv2(out)
        out = F.relu(out)

        # [b, 64, 24, 24] => [b, 64, 12, 12]
        out = F.max_pool2d(out, 2)
        out = self.dropout1(out)
        
        # [b, 64, 12, 12] => [b, 64 * 12 * 12] => [b, 9216]
        out = torch.flatten(out, 1)
        
        # [b, 9216] => [b, 128]
        out = self.fc1(out)
        out = F.relu(out)

        # [b, 128] => [b, 10]
        out = self.dropout2(out)
        out = self.fc2(out)

        output = F.log_softmax(out, dim=1)

        return output

train 函数


def train(model, epoch, train_loader):
    """训练"""

    # 训练模式
    model.train()

    # 迭代
    for step, (x, y) in enumerate(train_loader):
        # 加速
        if use_cuda:
            model = model.cuda()
            x, y = x.cuda(), y.cuda()

        # 梯度清零
        optimizer.zero_grad()

        output = model(x)

        # 计算损失
        loss = F.nll_loss(output, y)

        # 反向传播
        loss.backward()

        # 更新梯度
        optimizer.step()

        # 打印损失
        if step % 50 == 0:
            print('Epoch: {}, Step {}, Loss: {}'.format(epoch, step, loss))

test 函数


def test(model, test_loader):
    """测试"""
    
    # 测试模式
    model.eval()

    # 存放正确个数
    correct = 0

    with torch.no_grad():
        for x, y in test_loader:

            # 加速
            if use_cuda:
                model = model.cuda()
                x, y = x.cuda(), y.cuda()

            # 获取结果
            output = model(x)

            # 预测结果
            pred = output.argmax(dim=1, keepdim=True)

            # 计算准确个数
            correct += pred.eq(y.view_as(pred)).sum().item()

    # 计算准确率
    accuracy = correct / len(test_loader.dataset) * 100

    # 输出准确
    print("Test Accuracy: {}%".format(accuracy))

main 函数


def main():
    # 获取数据
    train_loader, test_loader = get_data()
    
    # 迭代
    for epoch in range(iteration_num):
        print("\n================ epoch: {} ================".format(epoch))
        train(network, epoch, train_loader)
        test(network, test_loader)

完整代码:


import torch
import torchvision
import torch.nn.functional as F
from torch.utils.data import DataLoader
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()

        # 卷积层
        self.conv1 = torch.nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
        self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))

        # Dropout层
        self.dropout1 = torch.nn.Dropout(0.25)
        self.dropout2 = torch.nn.Dropout(0.5)

        # 全连接层
        self.fc1 = torch.nn.Linear(9216, 128)
        self.fc2 = torch.nn.Linear(128, 10)

    def forward(self, x):
        """前向传播"""
        
        # [b, 1, 28, 28] => [b, 32, 26, 26]
        out = self.conv1(x)
        out = F.relu(out)
        
        # [b, 32, 26, 26] => [b, 64, 24, 24]
        out = self.conv2(out)
        out = F.relu(out)

        # [b, 64, 24, 24] => [b, 64, 12, 12]
        out = F.max_pool2d(out, 2)
        out = self.dropout1(out)
        
        # [b, 64, 12, 12] => [b, 64 * 12 * 12] => [b, 9216]
        out = torch.flatten(out, 1)
        
        # [b, 9216] => [b, 128]
        out = self.fc1(out)
        out = F.relu(out)

        # [b, 128] => [b, 10]
        out = self.dropout2(out)
        out = self.fc2(out)

        output = F.log_softmax(out, dim=1)

        return output


# 定义超参数
batch_size = 64  # 一次训练的样本数目
learning_rate = 0.0001  # 学习率
iteration_num = 5  # 迭代次数
network = Model()  # 实例化网络
print(network)  # 调试输出网络结构
optimizer = torch.optim.Adam(network.parameters(), lr=learning_rate)  # 优化器

# GPU 加速
use_cuda = torch.cuda.is_available()
print("是否使用 GPU 加速:", use_cuda)


def get_data():
    """获取数据"""

    # 获取测试集
    train = torchvision.datasets.MNIST(root="./data", train=True, download=True,
                                       transform=torchvision.transforms.Compose([
                                           torchvision.transforms.ToTensor(),  # 转换成张量
                                           torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                       ]))
    train_loader = DataLoader(train, batch_size=batch_size)  # 分割测试集

    # 获取测试集
    test = torchvision.datasets.MNIST(root="./data", train=False, download=True,
                                      transform=torchvision.transforms.Compose([
                                          torchvision.transforms.ToTensor(),  # 转换成张量
                                          torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                      ]))
    test_loader = DataLoader(test, batch_size=batch_size)  # 分割训练

    # 返回分割好的训练集和测试集
    return train_loader, test_loader


def train(model, epoch, train_loader):
    """训练"""

    # 训练模式
    model.train()

    # 迭代
    for step, (x, y) in enumerate(train_loader):
        # 加速
        if use_cuda:
            model = model.cuda()
            x, y = x.cuda(), y.cuda()

        # 梯度清零
        optimizer.zero_grad()

        output = model(x)

        # 计算损失
        loss = F.nll_loss(output, y)

        # 反向传播
        loss.backward()

        # 更新梯度
        optimizer.step()

        # 打印损失
        if step % 50 == 0:
            print('Epoch: {}, Step {}, Loss: {}'.format(epoch, step, loss))


def test(model, test_loader):
    """测试"""

    # 测试模式
    model.eval()

    # 存放正确个数
    correct = 0

    with torch.no_grad():
        for x, y in test_loader:

            # 加速
            if use_cuda:
                model = model.cuda()
                x, y = x.cuda(), y.cuda()

            # 获取结果
            output = model(x)

            # 预测结果
            pred = output.argmax(dim=1, keepdim=True)

            # 计算准确个数
            correct += pred.eq(y.view_as(pred)).sum().item()

    # 计算准确率
    accuracy = correct / len(test_loader.dataset) * 100

    # 输出准确
    print("Test Accuracy: {}%".format(accuracy))


def main():
    # 获取数据
    train_loader, test_loader = get_data()

    # 迭代
    for epoch in range(iteration_num):
        print("\n================ epoch: {} ================".format(epoch))
        train(network, epoch, train_loader)
        test(network, test_loader)

if __name__ == "__main__":
    main()

输出结果:

Model(
  (conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
  (dropout1): Dropout(p=0.25, inplace=False)
  (dropout2): Dropout(p=0.5, inplace=False)
  (fc1): Linear(in_features=9216, out_features=128, bias=True)
  (fc2): Linear(in_features=128, out_features=10, bias=True)
)
是否使用 GPU 加速: True

================ epoch: 0 ================
Epoch: 0, Step 0, Loss: 2.3131277561187744
Epoch: 0, Step 50, Loss: 1.0419045686721802
Epoch: 0, Step 100, Loss: 0.6259541511535645
Epoch: 0, Step 150, Loss: 0.7194482684135437
Epoch: 0, Step 200, Loss: 0.4020516574382782
Epoch: 0, Step 250, Loss: 0.6890509128570557
Epoch: 0, Step 300, Loss: 0.28660136461257935
Epoch: 0, Step 350, Loss: 0.3277580738067627
Epoch: 0, Step 400, Loss: 0.2750288248062134
Epoch: 0, Step 450, Loss: 0.28428223729133606
Epoch: 0, Step 500, Loss: 0.3514065444469452
Epoch: 0, Step 550, Loss: 0.23386947810649872
Epoch: 0, Step 600, Loss: 0.25338059663772583
Epoch: 0, Step 650, Loss: 0.1743898093700409
Epoch: 0, Step 700, Loss: 0.35752204060554504
Epoch: 0, Step 750, Loss: 0.17575909197330475
Epoch: 0, Step 800, Loss: 0.20604261755943298
Epoch: 0, Step 850, Loss: 0.17389622330665588
Epoch: 0, Step 900, Loss: 0.3188241124153137
Test Accuracy: 96.56%

================ epoch: 1 ================
Epoch: 1, Step 0, Loss: 0.23558208346366882
Epoch: 1, Step 50, Loss: 0.13511177897453308
Epoch: 1, Step 100, Loss: 0.18823786079883575
Epoch: 1, Step 150, Loss: 0.2644936144351959
Epoch: 1, Step 200, Loss: 0.145077645778656
Epoch: 1, Step 250, Loss: 0.30574971437454224
Epoch: 1, Step 300, Loss: 0.2386859953403473
Epoch: 1, Step 350, Loss: 0.08346735686063766
Epoch: 1, Step 400, Loss: 0.10480977594852448
Epoch: 1, Step 450, Loss: 0.07280707359313965
Epoch: 1, Step 500, Loss: 0.20928426086902618
Epoch: 1, Step 550, Loss: 0.20455852150917053
Epoch: 1, Step 600, Loss: 0.10085935145616531
Epoch: 1, Step 650, Loss: 0.13476189970970154
Epoch: 1, Step 700, Loss: 0.19087043404579163
Epoch: 1, Step 750, Loss: 0.0981522724032402
Epoch: 1, Step 800, Loss: 0.1961515098810196
Epoch: 1, Step 850, Loss: 0.041140712797641754
Epoch: 1, Step 900, Loss: 0.250461220741272
Test Accuracy: 98.03%

================ epoch: 2 ================
Epoch: 2, Step 0, Loss: 0.09572553634643555
Epoch: 2, Step 50, Loss: 0.10370486229658127
Epoch: 2, Step 100, Loss: 0.17737184464931488
Epoch: 2, Step 150, Loss: 0.1570713371038437
Epoch: 2, Step 200, Loss: 0.07462178170681
Epoch: 2, Step 250, Loss: 0.18744900822639465
Epoch: 2, Step 300, Loss: 0.09910508990287781
Epoch: 2, Step 350, Loss: 0.08929706364870071
Epoch: 2, Step 400, Loss: 0.07703761011362076
Epoch: 2, Step 450, Loss: 0.10133732110261917
Epoch: 2, Step 500, Loss: 0.1314031481742859
Epoch: 2, Step 550, Loss: 0.10394387692213058
Epoch: 2, Step 600, Loss: 0.11612939089536667
Epoch: 2, Step 650, Loss: 0.17494803667068481
Epoch: 2, Step 700, Loss: 0.11065669357776642
Epoch: 2, Step 750, Loss: 0.061209067702293396
Epoch: 2, Step 800, Loss: 0.14715790748596191
Epoch: 2, Step 850, Loss: 0.03930797800421715
Epoch: 2, Step 900, Loss: 0.18030673265457153
Test Accuracy: 98.46000000000001%

================ epoch: 3 ================
Epoch: 3, Step 0, Loss: 0.09266342222690582
Epoch: 3, Step 50, Loss: 0.0414913073182106
Epoch: 3, Step 100, Loss: 0.2152961939573288
Epoch: 3, Step 150, Loss: 0.12287424504756927
Epoch: 3, Step 200, Loss: 0.13468700647354126
Epoch: 3, Step 250, Loss: 0.11967387050390244
Epoch: 3, Step 300, Loss: 0.11301510035991669
Epoch: 3, Step 350, Loss: 0.037447575479745865
Epoch: 3, Step 400, Loss: 0.04699449613690376
Epoch: 3, Step 450, Loss: 0.05472381412982941
Epoch: 3, Step 500, Loss: 0.09839300811290741
Epoch: 3, Step 550, Loss: 0.07964356243610382
Epoch: 3, Step 600, Loss: 0.08182843774557114
Epoch: 3, Step 650, Loss: 0.05514759197831154
Epoch: 3, Step 700, Loss: 0.13785190880298615
Epoch: 3, Step 750, Loss: 0.062480345368385315
Epoch: 3, Step 800, Loss: 0.120387002825737
Epoch: 3, Step 850, Loss: 0.04458726942539215
Epoch: 3, Step 900, Loss: 0.17119190096855164
Test Accuracy: 98.55000000000001%

================ epoch: 4 ================
Epoch: 4, Step 0, Loss: 0.08094145357608795
Epoch: 4, Step 50, Loss: 0.05615215748548508
Epoch: 4, Step 100, Loss: 0.07766406238079071
Epoch: 4, Step 150, Loss: 0.07915271818637848
Epoch: 4, Step 200, Loss: 0.1301635503768921
Epoch: 4, Step 250, Loss: 0.12118984013795853
Epoch: 4, Step 300, Loss: 0.073218435049057
Epoch: 4, Step 350, Loss: 0.04517696052789688
Epoch: 4, Step 400, Loss: 0.08493026345968246
Epoch: 4, Step 450, Loss: 0.03904269263148308
Epoch: 4, Step 500, Loss: 0.09386837482452393
Epoch: 4, Step 550, Loss: 0.12583576142787933
Epoch: 4, Step 600, Loss: 0.09053893387317657
Epoch: 4, Step 650, Loss: 0.06912104040384293
Epoch: 4, Step 700, Loss: 0.1502612829208374
Epoch: 4, Step 750, Loss: 0.07162325084209442
Epoch: 4, Step 800, Loss: 0.10512275993824005
Epoch: 4, Step 850, Loss: 0.028180215507745743
Epoch: 4, Step 900, Loss: 0.08492615073919296
Test Accuracy: 98.69%

到此这篇关于手把手教你实现PyTorch的MNIST数据集的文章就介绍到这了,更多相关PyTorch MNIST数据集内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

手把手教你实现PyTorch的MNIST数据集

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

手把手教你实现Python连接数据库并快速取数的工具

在数据生产应用部门,取数分析是一个很常见的需求,实际上业务人员需求时刻变化,最高效的方式是让业务部门自己来取。本文就来手把手教大家搭建一个 Python 连接数据库,快速取数工具,需要的可以参考一下
2022-11-13

手把手教你搞定 ASP 数据库连接

ASP 数据库连接入门指南
手把手教你搞定 ASP 数据库连接
2024-02-20

用Python手把手教你实现2048小游戏

目录一、开发环境二、环境搭建三、原理介绍四、效果图一、开发环境 Python版本:3.6.4 相关模块: pygame模块; 以及一些Python自带的模块。 二、环境搭建 安装Python并添加到环境变量,pip安装需要的相关模块即可。
2022-06-02

CSS动画教程:手把手教你实现翻页特效

CSS动画教程:手把手教你实现翻页特效,需要具体代码示例CSS动画是现代网站设计中必不可少的一部分。它可以为网页增添生动感,吸引用户的注意力,并且提高用户体验。其中一种常见的CSS动画效果就是翻页特效。在这篇教程中,我将带领大家一步一步实现
2023-10-24

CSS动画教程:手把手教你实现旋转特效

引言:CSS动画是现代网页设计的重要组成部分之一,通过CSS动画可以为网页增加交互性和视觉吸引力。本文将教你如何使用CSS实现一个简单而漂亮的旋转特效,通过简单的代码示例,让你轻松掌握该技巧。创建HTML结构:首先,我们需要创建一个HTML
2023-10-21

CSS动画教程:手把手教你实现脉冲特效

引言:CSS动画是网页设计中常用的一种效果,它可以为网页增添活力和视觉吸引力。本篇文章将带您深入了解如何利用CSS实现脉冲特效,并提供具体的代码示例教您一步步完成。一、了解脉冲特效脉冲特效是一种循环变化的动画效果,通常用在按钮、图标或其他元
2023-10-21

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录