我的编程空间,编程开发者的网络收藏夹
学习永远不晚

净化数据海洋:一场数据清洗之旅

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

净化数据海洋:一场数据清洗之旅

1. 数据审查和探索

  • 初步审查数据以识别数据模式、错误和异常值。
  • 使用统计工具(如直方图、散点图)可视化数据并检测异常情况。
  • 识别数据类型、缺失值、重复值和数据异常情况。

2. 数据清洗

  • 处理缺失值:根据数据的分布和业务逻辑,使用插补(Imputation)技术填充缺失值。
  • 处理错误值:识别并更正数据中的错误值,如文本中的数字或相反符号。
  • 处理重复值:识别并删除重复的记录,同时保留必要的信息。
  • 数据转换:将数据转换为统一的格式,例如将日期转换为特定格式或将字符串变量转换为类别变量。

3. 数据验证

  • 业务规则验证:检查数据是否符合业务规则和约束,例如客户年龄是否大于 18 岁。
  • 数据一致性验证:确保不同数据源中的数据一致,例如订单日期与发货日期匹配。
  • 数据完整性验证:检查数据是否完整,没有缺失关键信息,例如缺少邮政编码或电子邮件地址。

4. 数据标准化

  • 数据规范化:将数据缩放到一个统一的范围,以便进行比较和分析。
  • 数据标准化:将数据转换为标准形式,例如将日期转换为 ISO 8601 格式。
  • 数据格式化:将数据格式化为特定格式,例如货币或日期,以提高可读性和一致性。

5. 数据增强

  • 特征工程:创建新的特征或变量,以增强数据的可预测性和分析能力。
  • 数据合成:生成合成数据来增加数据集的大小和多样性,以改进机器学习模型。
  • 数据标注:为数据添加标签或注释,以便用于有监督的机器学习任务。

数据清洗的工具

数据清洗可以使用各种工具,包括:

  • 编程语言(Python、R):提供广泛的数据清洗库和函数。
  • 数据清洗软件(OpenRefine、Trifacta):提供交互式界面和自动化工具。
  • 机器学习算法:可用于自动检测和纠正数据错误和异常。

数据清洗的重要性

数据清洗对于数据驱动的决策至关重要,因为它:

  • 提高数据质量和准确性。
  • 确保数据可靠且值得信赖。
  • 改善分析和机器学习模型的性能。
  • 促进数据驱动的决策制定。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

净化数据海洋:一场数据清洗之旅

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

目录