我的编程空间,编程开发者的网络收藏夹
学习永远不晚

说说B+ Tree

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

说说B+ Tree

先看下B+ Tree数据结构的特点(From Wikipedia).

1. The primary value of a B+ tree is in storing data for efficient retrieval in a block-oriented storage context - in particular, filesystems.


2. B+ trees have very high fanout(number of pointers to child nodes in a node, typically on the order of 100 or more), which reduces the number of I/O operations required to find an element in the tree.


对于第2点, 看看下图, 每个结点都含有指向下一层的指针, 指针越多, 意味着树的高度就越矮, 即在块设备(常见的就是磁盘)中检索数据, 需要的I/O次数也就越少.

说说B+ Tree


在MySQL中, 不同的存储引擎, 使用B+ Tree数据结构, 形成了各自存储数据的方式. 对于InnoDB存储引擎来说, 是Clustered index(聚簇索引)的存储方式, (在Oracle中叫索引组织表, 即index-organized table). 在MyISAM存储引擎中, 就是堆表的存储方式. 下图可以较直观的反应两者数据的组织方式.

说说B+ Tree


左上方图聚簇索引中,

a. 非叶子结点存储的是, <Primary key, Pointer>.

b. 叶子结点存储的是, 一行行记录.


左下方图二级索引中,

a. 非叶子结点储存的是, <Key, Pointer>.

b. 叶子结点存储的是, <Key, Primary key>.


右图索引结构中,

a. 非叶子结点存储的是, <Key,Pointer>.

b. 叶子结点存储的是, <Pointer>, 其指向记录.


下面看看B+ Tree数据结构的efficient retrieval和high fanout特点, 在InnoDB存储引擎中是如何体现的. 以左上图为例, 假设使用Bigint数据类型(8Bytes)作为主键, 一条记录大小为400Bytes, Page大小为16K, 那么索引树高度为1, 2, 3层时, 存储的记录有多少(注, Pointer大小为6Bytes).

说说B+ Tree


现在普通的SAS盘, 一秒钟也可以完成200次I/O, 从千万量级的数据中, 检索一条记录, 只要3次I/O, 即0.015秒就行了, 可见效率之高, 又加之目前一般使用的SSD盘, 最少也要再快50倍.



最后看看两种数据存储方式的优缺点.

1. 观察第二幅图片, 在InnoDB存储引擎中使用二级索引检索数据时, 由于其叶子结点存储的是<Key, Primary key>, 在获取到Primary key时, 还要去查看聚簇索引, 即回表操作, 才能获取到记录. 而在MyISAM存储引擎中, 主键索引和二级索引具有同等地位(只不过主键索引值非空), 检索数据时, 无需回表. 也许从该点来说MyISAM存储引擎更适合查询.


2. 对于DML操作, 一条记录从400Bytes变更到600, 若不能原地更新的话, 在MyISAM存储引擎中, 索引叶子结点存储的是指向记录的指针, 相比InnoDB存储引擎来说, 其变动会更大些. 也许从该点来说InnoDB存储引擎更适合变更. 当然了, 两者为了预防非原地更新产生的影响, 都会在Page中预留空洞.


若感兴趣可关注订阅号”数据库最佳实践”(DBBestPractice).

说说B+ Tree

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

说说B+ Tree

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

2024-04-02

MySQL进阶篇(02):索引体系划分,B-Tree结构说明

本文源码:GitHub·点这里 || GitEE·点这里一、索引简介1、基本概念首先要明确索引是什么:索引是一种数据结构,数据结构是计算机存储、组织数据的方式,是指相互之间存在一种或多种特定关系的数据元素的集合,例如:链表,堆栈,队列,二叉树等等。其次要清楚
MySQL进阶篇(02):索引体系划分,B-Tree结构说明
2018-11-14

图解MySQL索引--B-Tree(B+Tree)

【推荐】2020年最新Java电子书集合.pdf(吐血整理) >>> 看了很多关于索引的博客,讲的大同小异。但是始终没有让我明白关于索引的一些概念,如B-Tree索引,Hash索引,唯一索引....或许有很多人和我一样,没搞清楚概念就开始研究B-Tree,B
图解MySQL索引--B-Tree(B+Tree)
2017-05-16

mysql中B+Tree和B-Tree有什么区别

这篇文章给大家介绍mysql中B+Tree和B-Tree有什么区别,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。1、B-树的关键词和记录放在一起,叶节点可以看作是外部节点,不包含任何信息;B+树的非叶节点只有关键词和指
2023-06-15

MySQL B-tree与B+tree索引数据结构剖析

目录一、产生的背景1.1 进化要求二、B-tree2.1 B-tree特性三、B+tree3.1 B+tree特性四、结论一、产生的背景二叉查找树的查找时间复杂度是O(logN),整体的查询效率已经足够高了,那么为什么还会有B树和B+树的
2022-08-22

浅析MysQL B-Tree 索引

B-Tree 索引不同的存储引擎也可能使用不同的存储结构,i如,NDB集群存储引擎内部实现使用了T-Tree结构存储这种索引,即使其名字是BTREE;InnoDB使用的是B+Tree。 B-Tree通常一位这所有的值都是按顺序存储的,并且每
2022-05-22

关于B+tree (附python 模

前几天我写了点btree的东西(http://thuhak.blog.51cto.com/2891595/1261783),今天继续这个思路,继续写b+tree。而且b+tree才是我的目的,更加深入理解文件和数据库索引的基本原理。在之前,
2023-01-31

说一说Python logging

最近有个需求是把以前字符串输出的log 改为json 格式,看了别人的例子,还是有些比较茫然,索性就把logging 整个翻了一边,做点小总结. 初看log 在程序中, log 的用处写代码的你用你知道,log 有等级,DEBUG, INF
2022-06-04

Go语言中的红黑树、B Tree、B+Tree等基本数据结构

Go语言中的红黑树、B树和B+树是基本的数据结构,可用于实现高效的查找、插入和删除操作。1. 红黑树(Red-Black Tree)是一种自平衡的二叉查找树。它具有以下特点:- 每个节点要么是红色,要么是黑色。- 根节点是黑色的。- 每个叶
2023-10-12

mysql为什么使用b-tree

mysql使用b-tree作为索引结构的主要原因有以下几点:1、高效的平衡性,B-tree是一种自平衡的树状数据结构,能够自动调整树的结构以保持平衡;2、适应磁盘存储特性,B-tree的节点大小通常设置与页的大小相同,使得一个节点即可加载到
2023-07-28

编程热搜

目录