我的编程空间,编程开发者的网络收藏夹
学习永远不晚

OpenCV哈里斯角检测怎么应用

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

OpenCV哈里斯角检测怎么应用

这篇文章主要讲解了“OpenCV哈里斯角检测怎么应用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“OpenCV哈里斯角检测怎么应用”吧!

理论

OpenCV哈里斯角检测怎么应用

OpenCV哈里斯角检测怎么应用

可以用如下图来表示:

OpenCV哈里斯角检测怎么应用

因此,Harris Corner Detection的结果是具有这些分数的灰度图像。合适的阈值可提供图像的各个角落。

OpenCV中的哈里斯角检测

在OpenCV中有实现哈里斯角点检测,cv2.cornerHarris()。其参数为:

dst = cv2.cornerHarris(class="lazy" data-src, blockSize, ksize, k[, dst[, borderType]] )

  • class="lazy" data-src - 输入图像,灰度和float32类型

  • blockSize - 是拐角检测考虑的邻域大小

  • ksize - 使用的Sobel导数的光圈参数

  • k- 等式中的哈里斯检测器自由参数

import cv2import numpy as npfrom matplotlib import pyplot as pltimg = cv2.imread('chessboard.png')img_copy = img.copy()gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)dst = cv2.cornerHarris(gray, 2, 3, 0.04)# result is dilated for marking the corners, not importantdst = cv2.dilate(dst, None)# Threshold for an optimal value, it may vary depending on the image.img[dst >0.01*dst.max()]=[255,0,0]# plotplt.subplot(121)plt.imshow(img_copy, cmap='gray')plt.xticks([])plt.yticks([])plt.subplot(122)plt.imshow(img, cmap='gray')plt.xticks([])plt.yticks([])plt.show()

以下是结果:

OpenCV哈里斯角检测怎么应用

可以看到,各个角点已经标红。

SubPixel精度的转角

有时候可能需要找到最精确的角点。OpenCV附带了一个函数cv2.cornerSubPix(),它进一步细化了以亚像素精度检测到的角点。下面是一个例子。

  • 和之前一样,首先需要先找到哈里斯角点

  • 然后通过这些角的质心(可能在一个角上有一堆像素,取它们的质心)来细化它们

  • Harris角用红色像素标记,SubPixel角用绿色像素标记

对于cv2.cornerSubPix()函数,必须定义停止迭代的条件。我们可以在特定的迭代次数或达到一定的精度后停止它。此外,还需要定义它将搜索角点的邻居的大小。

corners = cv.cornerSubPix( image, corners, winSize, zeroZone, criteria )

  • image: 输入图像,单通道

  • corners: 输入的初始坐标和为输出提供的精制坐标

  • winSize: 搜索窗口的一半侧面长度

  • zeroZone: 搜索区域中间的死区大小的一半在下面的公式中的求和,有时用于避免自相关矩阵的可能奇点。(−1,−1)(-1,-1)(−1,−1) 的值表示没有这样的尺寸

  • criteria: 终止角点细化过程的条件

# sub pixel更精度角点import cv2import numpy as npimg = cv2.imread('chessboard2.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# find Harris cornersdst = cv2.cornerHarris(gray,2, 3, 0.04)dst = cv2.dilate(dst, None)ret, dst = cv2.threshold(dst, 0.01*dst.max(), 255,0)dst = np.uint8(dst)# find centroidsret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst)# define the criteria to stop and refine the cornerscriteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001)corners = cv2.cornerSubPix(gray, np.float32(centroids), (5, 5), (-1, -1), criteria)# Now draw themres = np.hstack((centroids,corners))res = np.int0(res)img[res[:,1],res[:,0]]=[0,0,255]img[res[:,3],res[:,2]] = [0,255,0]cv2.imshow('subpixel', img)cv2.waitKey(0)cv2.destroyAllWindows()

以下是结果, 可以看到SubPixel更精确一点:

OpenCV哈里斯角检测怎么应用

感谢各位的阅读,以上就是“OpenCV哈里斯角检测怎么应用”的内容了,经过本文的学习后,相信大家对OpenCV哈里斯角检测怎么应用这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

OpenCV哈里斯角检测怎么应用

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

OpenCV哈里斯角检测怎么应用

这篇文章主要讲解了“OpenCV哈里斯角检测怎么应用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“OpenCV哈里斯角检测怎么应用”吧!理论可以用如下图来表示:因此,Harris Corne
2023-07-06

OpenCV哈里斯角检测|Harris Corner理论实践

这篇文章主要为大家介绍了OpenCV哈里斯角检测|Harris Corner理论实践,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-15

怎么用Python+OpenCV实现猫脸检测

这篇文章主要介绍了怎么用Python+OpenCV实现猫脸检测的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇怎么用Python+OpenCV实现猫脸检测文章都会有所收获,下面我们一起来看看吧。开发工具Pytho
2023-06-27

怎么使用opencv实现车道线检测

这篇“怎么使用opencv实现车道线检测”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“怎么使用opencv实现车道线检测”文
2023-06-29

使用OpenCV怎么实现Canny边缘检测

今天就跟大家聊聊有关使用OpenCV怎么实现Canny边缘检测,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。1. Canny 边缘检测理论Canny 是一种常用的边缘检测算法. 其是
2023-06-20

使用opencv怎么实现一个车道线检测功能

这篇文章给大家介绍使用opencv怎么实现一个车道线检测功能,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。原理:算法基本思想说明:传统的车道线检测,多数是基于霍夫直线检测,其实这个里面有个很大的误区,霍夫直线拟合容易受
2023-06-06

使用python与opencv怎么实现一个运动检测器功能

使用python与opencv怎么实现一个运动检测器功能?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。Python主要用来做什么Python主要应用于:1、We
2023-06-06

怎么利用Python+OpenCV实现简易图像边缘轮廓检测

本篇内容主要讲解“怎么利用Python+OpenCV实现简易图像边缘轮廓检测”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么利用Python+OpenCV实现简易图像边缘轮廓检测”吧!函数基础
2023-06-30

怎么在Python3中使用OpenCV实现实时摄像头人脸检测

这篇文章主要介绍怎么在Python3中使用OpenCV实现实时摄像头人脸检测,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!OpenCV 是一个C++库,目前流行的计算机视觉编程库,用于实时处理计算机视觉方面的问题,它
2023-06-25

怎么在python中利用opencv实现一个车道线检测功能

这篇文章将为大家详细讲解有关怎么在python中利用opencv实现一个车道线检测功能,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。实现思路:1、canny边缘检测获取图中的边缘信息;2、霍
2023-06-06

Android应用开发的版本更新检测升级功能怎么实现

这篇文章主要介绍“Android应用开发的版本更新检测升级功能怎么实现”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Android应用开发的版本更新检测升级功能怎么实现”文章能帮助大家解决问题。一.
2023-06-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录