我的编程空间,编程开发者的网络收藏夹
学习永远不晚

什么是拉链表

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

什么是拉链表

这篇文章主要介绍“什么是拉链表”,在日常操作中,相信很多人在什么是拉链表问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”什么是拉链表”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

 一、拉链表介绍

拉链表:维护历史状态,以及最新状态数据的一种表,拉链表根据拉链粒度的不同,实际上相当于快照,只不过做了优化,去除了一部分不变的记录,通过拉链表可以很方便的还原出拉链时点的客户记录

二、拉链表场景

数据仓库的数据模型设计过程中,经常会遇到这样的需求:

表中的部分字段会被update,例如:用户的地址,产品的描述信息,品牌信息等等;

需要查看某一个时间点或者时间段的历史快照信息,例如:查看某一个产品在历史某一时间点的状态 查看某一个用户在过去某一段时间内,更新过几次等等

变化的比例和频率不是很大,例如:总共有1000万的会员,每天新增和发生变化的有10万左右

三、商品数据案例

需求:商品表:

列名类型说明
goods_idvarchar(50)商品编号
goods_statusvarchar(50)商品状态(待审核、待售、在售、已删除)
createtimevarchar(50)商品创建日期
modifytimevarchar(50)商品修改日期

2019年12月20日的数据如下所示:

goods_idgoods_statuscreatetimemodifytime
001待审核2019-12-202019-12-20
002待售2019-12-202019-12-20
003在售2019-12-202019-12-20
004已删除2019-12-202019-12-20

商品的状态,会随着时间推移而变化,我们需要将商品的所有变化的历史信息都保存下来。如何实现呢?

方案一: 快照每一天的数据到数仓(图解)

该方案为:

  • 每一天都保存一份全量,将所有数据同步到数仓中(我这里就使用MySQL操作的)

  • 很多记录都是重复保存,没有任何变化

12月20日(4条数据)

goods_idgoods_statuscreatetimemodifytime
001待审核2019-12-182019-12-20
002待售2019-12-192019-12-20
003在售2019-12-202019-12-20
004已删除2019-12-152019-12-20

12月21日(10条数据)

goods_idgoods_statuscreatetimemodifytime
以下为12月20日快照数据   
001待审核2019-12-182019-12-20
002待售2019-12-192019-12-20
003在售2019-12-202019-12-20
004已删除2019-12-152019-12-20
以下为12月21日快照数据   
001  待售(从待审核到待售)2019-12-182019-12-21
002待售2019-12-192019-12-20
003在售2019-12-202019-12-20
004已删除2019-12-152019-12-20
005(新商品)待审核2019-12-212019-12-21
006(新商品)待审核2019-12-212019-12-21

12月22日(18条数据)

goods_idgoods_statuscreatetimemodifytime
以下为12月20日快照数据   
001待审核2019-12-182019-12-20
002待售2019-12-192019-12-20
003在售2019-12-202019-12-20
004已删除2019-12-152019-12-20
以下为12月21日快照数据   
001待售(从待审核到待售)2019-12-182019-12-21
002待售2019-12-192019-12-20
003在售2019-12-202019-12-20
004已删除2019-12-152019-12-20
005待审核2019-12-212019-12-21
006待审核2019-12-212019-12-21
以下为12月22日快照数据   
001待售2019-12-182019-12-21
002待售2019-12-192019-12-20
003已删除(从在售到已删除)2019-12-202019-12-22
004待审核2019-12-212019-12-21
005待审核2019-12-212019-12-21
006已删除(从待审核到已删除)2019-12-212019-12-22
007待审核2019-12-222019-12-22
008待审核2019-12-222019-12-22

方案一: MySQL到,MySQL数仓代码实现

MySQL初始化

1.在MySQL中zw库和商品表用于到原始数据层

-- 创建数据库 create database if not exists zw; -- 创建商品表 create table if not exists `zw`.`t_product`( goods_id varchar(50), -- 商品编号  goods_status varchar(50), -- 商品状态  createtime varchar(50), -- 商品创建时间  modifytime varchar(50) -- 商品修改时间 );

2.在MySQL中创建ods和dw层 模拟数仓

-- ods创建商品表 create table if not exists `zw`.`ods_t_product`( goods_id varchar(50), -- 商品编号  goods_status varchar(50), -- 商品状态  createtime varchar(50), -- 商品创建时间  modifytime varchar(50), -- 商品修改时间 cdat varchar(10)   --模拟hive分区 )default character set = 'utf8'; ; -- dw创建商品表 create table if not exists `zw`.`dw_t_product`( goods_id varchar(50), -- 商品编号  goods_status varchar(50), -- 商品状态  createtime varchar(50), -- 商品创建时间  modifytime varchar(50), -- 商品修改时间  cdat varchar(10)  -- 模拟hive分区 )default character set = 'utf8'; ;

增量导入12月20号数据

1.原始数据导入12月20号数据(4条)

insert into `zw`.`t_product`(goods_id, goods_status, createtime, modifytime) values ('001', '待审核', '2019-12-18', '2019-12-20'), ('002', '待售', '2019-12-19', '2019-12-20'), ('003', '在售', '2019-12-20', '2019-12-20'), ('004', '已删除', '2019-12-15', '2019-12-20');

注意:由于我这里使用的MySQL来模拟的数仓在这里偷个懒直接使用insert into的方式导入数据,在企业中可能会使用hive来做数仓使用kettle  或者sqoop或datax等来同步数据

# 从原始数据层导入到ods 层 insert into zw.ods_t_product select *,'20191220' from zw.t_product ; # 从ods同步到dw层 insert into zw.dw_t_product select * from zw.ods_t_product where cdat='20191220';

增量导入12月21数据

1.原始数据层导入12月21日数据(6条数据)

UPDATE `zw`.`t_product` SET goods_status = '待售', modifytime = '2019-12-21' WHERE goods_id = '001'; INSERT INTO `zw`.`t_product`(goods_id, goods_status, createtime, modifytime) VALUES ('005', '待审核', '2019-12-21', '2019-12-21'), ('006', '待审核', '2019-12-21', '2019-12-21');

2.将数据导入到ods层与dw层

# 从原始数据层导入到ods 层 insert into zw.ods_t_product select *,'20191221' from zw.t_product ; # 从ods同步到dw层 insert into zw.dw_t_product select * from zw.ods_t_product where cdat='20191221';

3.查看dw层的运行结果

select * from zw.dw_t_product where cdat='20191221';

增量导入12月22日数据

1.原始数据层导入12月22日数据(6条数据)

UPDATE `zw`.`t_product` SET goods_status = '已删除', modifytime = '2019-12-22' WHERE goods_id = '003'; UPDATE `zw`.`t_product` SET goods_status = '已删除', modifytime = '2019-12-22' WHERE goods_id = '006'; INSERT INTO `zw`.`t_product`(goods_id, goods_status, createtime, modifytime) VALUES ('007', '待审核', '2019-12-22', '2019-12-22'), ('008', '待审核', '2019-12-22', '2019-12-22');

2.将数据导入到ods层与dw层

# 从原始数据层导入到ods 层 insert into zw.ods_t_product select *,'20191222' from zw.t_product ; # 从ods同步到dw层 insert into zw.dw_t_productpeizhiwenjian select * from zw.ods_t_product where cdat='20191222';

3.查看dw层的运行结果

select * from zw.dw_t_product where cdat='20191222';

从上述案例,可以看到:

表每天保留一份全量,每次全量中会保存很多不变的信息,如果数据量很大的话,对存储是极大的浪费

可以讲表设计为拉链表,既能满足反应数据的历史状态,又可以最大限度地节省存储空间。

方案二: 使用拉链表保存历史快照(思路/图解)

  • 拉链表不存储冗余的数据,只有某行的数据发生变化,才需要保存下来,相比每次全量同步会节省存储空间

  • 能够查询到历史快照

  • 额外的增加了两列(dw_start_date、dw_end_date),为数据行的生命周期

12月20日商品拉链表的数据:

goods_idgoods_statuscreatetimemodifytimedw_start_datedw_end_date
001待审核2019-12-182019-12-202019-12-209999-12-31
002待售2019-12-192019-12-20 2019-12-209999-12-31
003在售2019-12-202019-12-20 2019-12-209999-12-31
004已删除2019-12-152019-12-202019-12-209999-12-31

12月20日的数据是全新的数据导入到dw表

  • dw_start_date表示某一条数据的生命周期起始时间,即数据从该时间开始有效(即生效日期)

  • dw_end_date表示某一条数据的生命周期结束时间,即数据到这一天(不包含)(即失效日期)

  • dw_end_date为9999-12-31,表示当前这条数据是最新的数据,数据到9999-12-31才过期

12月21日商品拉链表的数据

goods_idgoods_statuscreatetimemodifytimedw_start_datedw_end_date
001待审核2019-12-182019-12-202019-12-202019-12-21
002待售2019-12-192019-12-202019-12-209999-12-31
003在售2019-12-202019-12-202019-12-209999-12-31
004已删除2019-12-152019-12-202019-12-209999-12-31
001(变)待售2019-12-182019-12-212019-12-219999-12-31
005(新)待审核2019-12-212019-12-212019-12-219999-12-31

12月21日商品拉链表的数据

  • 拉链表中没有存储冗余的数据,(只要数据没有变化,无需同步)

  • 001编号的商品数据的状态发生了变化(从待审核 →  待售),需要将原有的dw_end_date从9999-12-31变为2019-12-21,表示待审核状态,在2019/12/20(包含) -  2019/12/21(不包含)有效

  • 001编号新的状态重新保存了一条记录,dw_start_date为2019/12/21,dw_end_date为9999/12/31

  • 新数据005、006、dw_start_date为2019/12/21,dw_end_date为9999/12/31

12月22日商品拉链表的数据

goods_idgoods_statuscreatetimemodifytimedw_start_datedw_end_date
001待审核2019-12-182019-12-202019-12-202019-12-21
002待售2019-12-192019-12-202019-12-209999-12-31
003在售2019-12-202019-12-202019-12-202019-12-22
004已删除2019-12-152019-12-202019-12-209999-12-31
001待售2019-12-182019-12-212019-12-219999-12-31
005待审核2019-12-212019-12-212019-12-219999-12-31
006待审核2019-12-212019-12-212019-12-219999-12-31
003(变)已删除2019-12-202019-12-222019-12-229999-12-31
007(新)  待审核2019-12-222019-12-22 2019-12-229999-12-31
008(新)  待审核2019-12-222019-12-22 2019-12-229999-12-31

12月22日商品拉链表的数据

  • 003编号的商品数据的状态发生了变化(从在售→已删除),需要将原有的  dw_end_date从9999-12-31变为2019-12-22,表示在售状态,在2019/12/20(包含) - 2019/12/22(不包含)  有效

  • 003编号新的状态重新保存了一条记录,dw_start_date为2019/12/22,dw_end_date为9999/12/31

  • 新数据007、008、dw_start_date为2019/12/22,dw_end_date为9999/12/31

方案二: 拉链表快照代码实现

操作流程:

  1. 鸿蒙官方战略合作共建——HarmonyOS技术社区

  2. 在原有dw层表上,添加额外的两列

  3. 只同步当天修改的数据到ods层

  4. 拉链表算法实现

  5. 拉链表的数据为:当天最新的数据 UNION ALL 历史数据

代码实现

1.在MySQL中zw库和商品表用于到原始数据层

-- 创建数据库 create database if not exists zw;  -- 创建商品表 create table if not exists `zw`.`t_product_2`( goods_id varchar(50), -- 商品编号 goods_status varchar(50), -- 商品状态  createtime varchar(50), -- 商品创建时间  modifytime varchar(50) -- 商品修改时间 )default character set = 'utf8';

2.在MySQL中创建ods和dw层 模拟数仓

-- ods创建商品表 create table if not exists `zw`.`ods_t_product2`( goods_id varchar(50), -- 商品编号  goods_status varchar(50), -- 商品状态  createtime varchar(50), -- 商品创建时间  modifytime varchar(50), -- 商品修改时间 cdat varchar(10)   -- 模拟hive分区 )default character set = 'utf8'; -- dw创建商品表 create table if not exists `zw`.`dw_t_product2`( goods_id varchar(50), -- 商品编号  goods_status varchar(50), -- 商品状态  createtime varchar(50), -- 商品创建时间  modifytime varchar(50), -- 商品修改时间  dw_start_date varchar(12), --  生效日期  dw_end_date varchar(12), -- 失效时间  cdat varchar(10)  -- 模拟hive分区 )default character set = 'utf8';

全量导入2019年12月20日数据

1.原始数据层导入12月20日数据(4条数据)

insert into `zw`.`t_product_2`(goods_id, goods_status, createtime, modifytime) values ('001', '待审核', '2019-12-18', '2019-12-20'), ('002', '待售', '2019-12-19', '2019-12-20'), ('003', '在售', '2019-12-20', '2019-12-20'), ('004', '已删除', '2019-12-15', '2019-12-20');

2.将数据导入到数仓中的ods层

insert into zw.ods_t_product2 select *,'20191220' from zw.t_product_2 where modifytime >='2019-12-20'

3.将数据从ods层导入到dw层

insert into zw.dw_t_product2 select goods_id, goods_status, createtime, modifytime, modifytime,'9999-12-31', cdat from zw.ods_t_product2 where cdat='20191220'

增量导入2019年12月21日数据

1.原始数据层导入12月21日数据(6条数据)

UPDATE `zw`.`t_product_2` SET goods_status = '待售', modifytime = '2019-12-21' WHERE goods_id = '001'; INSERT INTO `zw`.`t_product_2`(goods_id, goods_status, createtime, modifytime) VALUES ('005', '待审核', '2019-12-21', '2019-12-21'), ('006', '待审核', '2019-12-21', '2019-12-21');

2.原始数据层同步到ods层

insert into zw.ods_t_product2 select *,'20191221' from zw.t_product_2 where modifytime >='2019-12-21';

3.编写ods层到dw层重新计算 dw_end_date

注意:我这里直接将结果的SQL语句放在这里语句 因为需要将覆盖写入到数据库中我这里就没有写了,但是不影响我们结果。12月22 号的操作流程跟21  一样我就里就不写了

select t1.goods_id, t1.goods_status, t1.createtime, t1.modifytime,        t1.dw_start_date,        case when (t2.goods_id is not null and t1.dw_end_date>'2019-12-21') then '2019-12-21'else t1.dw__date end as end ,        t1.cdat from zw.dw_t_product2 t1 left join (select * from zw.ods_t_product2 where cdat='20191221')t2 on t1.goods_id=t2.goods_id union select goods_id, goods_status, createtime, modifytime, modifytime,'9999-12-31', cdat from zw.ods_t_product2 where cdat='20191221'

查询结果

什么是拉链表

到此,关于“什么是拉链表”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

什么是拉链表

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python中什么是链表

python中什么是链表?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。python可以做什么Python是一种编程语言,内置了许多有效的工具,Python几乎无所不能,该语言通
2023-06-14

java中单向链表和双向链表是什么

小编给大家分享一下java中单向链表和双向链表是什么,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一、链表简介1、链表概念链表是一种物理存储单元上非连续、非顺序的
2023-06-19

php的链表是什么意思

在php中,链表是一种基础数据结构,是一种线性表;链表会动态地进行存储分配,可以适应数据动态增减的情况,且可以方便地插入、删除数据项。链表有三种不同的类型:单向链表,双向链表以及循环链表。
2014-10-31

python链表反转的方法是什么

链表反转的方法有多种,以下是其中两种常见的方法:1. 迭代法:- 首先定义三个指针:prev、cur和next,初始时prev为None,cur为链表的头结点,next为cur的下一个节点。- 在每一次迭代中,将cur的next指针指向pr
2023-08-18

python链表的反转方式是什么

本篇内容介绍了“python链表的反转方式是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!python链表的反转反转链表给你单链表的头节
2023-07-05

C语言线性表的线性链表是什么

这篇文章主要介绍“C语言线性表的线性链表是什么”,在日常操作中,相信很多人在C语言线性表的线性链表是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C语言线性表的线性链表是什么”的疑惑有所帮助!接下来,请跟
2023-06-29

python中链表指针的作用是什么

在Python中,链表指针用于指示链表中的节点之间的连接关系。链表是一种数据结构,由节点组成,每个节点包含一个数据项和一个指向下一个节点的指针。通过指针,可以在链表中按顺序访问每个节点。链表指针的作用包括:链接节点:链表的每个节点都包含一
2023-10-27

C语言中链表与单链表有什么用

这篇文章将为大家详细讲解有关C语言中链表与单链表有什么用,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。链表是什么及链表的优势链表是一种介于数组的另外一种数据结构:我们知道数组可以存放很多的元素,这些元素都
2023-06-29

C语言中链表的作用是什么

C语言中链表的作用是什么,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。首先,指针计算机中的所有内容都是数字。在C语言中创建变量时,编译器仅按地址处理它,但是在您
2023-06-16

Java数据结构之单链表是什么

这篇文章给大家分享的是有关Java数据结构之单链表是什么的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。一、图示二、链表的概念及结构 链表是一种物理存储结构上非连续存储结构,数据元素的逻辑顺序是通过链表中的引用链接
2023-06-15

Python判断回文链表的方法是什么

小编今天带大家了解Python判断回文链表的方法是什么,文中知识点介绍的非常详细。觉得有帮助的朋友可以跟着小编一起浏览文章的内容,希望能够帮助更多想解决这个问题的朋友找到问题的答案,下面跟着小编一起深入学习“Python判断回文链表的方法是
2023-06-26

Redis中数组和链表的关系是什么

Redis中数组和链表的关系是什么?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。1.数组和链表基础知识数组:数组会在内存中开辟一块连续的空间存储数据,这种存储方式有利也有弊
2023-06-06

c语言链表的删除方法是什么

在C语言中,链表的删除操作通常需要执行以下步骤:1. 首先,创建一个指针用于指向要删除的节点,通常称为"current"或者"temp"。2. 如果链表为空(即头指针为NULL),则无法进行删除操作,可以直接返回。3. 如果要删除的节点是头
2023-08-25

编程热搜

目录