我的编程空间,编程开发者的网络收藏夹
学习永远不晚

由浅入深学习TensorFlow MNIST 数据集

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

由浅入深学习TensorFlow MNIST 数据集

MNIST 数据集介绍

MNIST 包含 0~9 的手写数字, 共有 60000 个训练集和 10000 个测试集. 数据的格式为单通道 28*28 的灰度图.

LeNet 模型介绍

LeNet 网络最早由纽约大学的 Yann LeCun 等人于 1998 年提出, 也称 LeNet5. LeNet 是神经网络的鼻祖, 被誉为卷积神经网络的 “Hello World”.

卷积

在这里插入图片描述

池化 (下采样)

在这里插入图片描述

激活函数 (ReLU)

在这里插入图片描述

LeNet 逐层分析

1. 第一个卷积层

在这里插入图片描述

2. 第一个池化层

在这里插入图片描述

3. 第二个卷积层

在这里插入图片描述

4. 第二个池化层

在这里插入图片描述

5. 全连接卷积层

在这里插入图片描述

6. 全连接层

在这里插入图片描述

7. 全连接层 (输出层)

在这里插入图片描述

代码实现

导包


from tensorflow.keras.datasets import mnist
from matplotlib import pyplot as plt
import numpy as np
import tensorflow as tf

读取 & 查看数据


# ------------------1. 读取 & 查看数据------------------

# 读取数据
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# 数据集查看
print(X_train.shape)  # (60000, 28, 28)
print(y_train.shape)  # (60000,)
print(X_test.shape)  # (10000, 28, 28)
print(y_test.shape)  # (10000,)
print(type(X_train))  # <class 'numpy.ndarray'>

# 图片显示
plt.imshow(X_train[0], cmap="Greys")  # 查看第一张图片
plt.show()

数据预处理


# ------------------2. 数据预处理------------------

# 格式转换 (将图片从28*28扩充为32*32)
X_train = np.pad(X_train, ((0, 0), (2, 2), (2, 2)), "constant", constant_values=0)
X_test = np.pad(X_test, ((0, 0), (2, 2), (2, 2)), "constant", constant_values=0)
print(X_train.shape)  # (60000, 32, 32)
print(X_test.shape)  # (10000, 32, 32)

# 数据集格式变换
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)

# 数据正则化
X_train /= 255
X_test /= 255

# 数据维度转换
X_train = np.expand_dims(X_train, axis=-1)
X_test = np.expand_dims(X_test, axis=-1)
print(X_train.shape)  # (60000, 32, 32, 1)
print(X_test.shape)  # (10000, 32, 32, 1)

模型建立


# 第一个卷积层
conv_layer_1 = tf.keras.layers.Conv2D(filters=6, kernel_size=(5, 5), padding="valid", activation=tf.nn.relu)
# 第一个池化层
pool_layer_1 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), padding="same")
# 第二个卷积层
conv_layer_2 = tf.keras.layers.Conv2D(filters=16, kernel_size=(5, 5), padding="valid", activation=tf.nn.relu)
# 第二个池化层
pool_layer_2 = tf.keras.layers.MaxPool2D(padding="same")
# 扁平化
flatten = tf.keras.layers.Flatten()
# 第一个全连接层
fc_layer_1 = tf.keras.layers.Dense(units=120, activation=tf.nn.relu)
# 第二个全连接层
fc_layer_2 = tf.keras.layers.Dense(units=84, activation=tf.nn.softmax)
# 输出层
output_layer = tf.keras.layers.Dense(units=10, activation=tf.nn.softmax)

卷积 Conv2D 的用法:

  • filters: 卷积核个数
  • kernel_size: 卷积核大小
  • strides = (1, 1): 步长
  • padding = “vaild”: valid 为舍弃, same 为补齐
  • activation = tf.nn.relu: 激活函数
  • data_format = None: 默认 channels_last

在这里插入图片描述

池化 AveragePooling2D 的用法:

  • pool_size: 池的大小
  • strides = (1, 1): 步长
  • padding = “vaild”: valid 为舍弃, same 为补齐
  • activation = tf.nn.relu: 激活函数
  • data_format = None: 默认 channels_last

全连接 Dense 的用法:

  • units: 输出的维度
  • activation: 激活函数
  • strides = (1, 1): 步长
  • padding = “vaild”: valid 为舍弃, same 为补齐
  • activation = tf.nn.relu: 激活函数
  • data_format = None: 默认 channels_last

# 模型实例化
model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(filters=6, kernel_size=(5, 5), padding='valid', activation=tf.nn.relu,
                           input_shape=(32, 32, 1)),
    # relu
    tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
    tf.keras.layers.Conv2D(filters=16, kernel_size=(5, 5), padding='valid', activation=tf.nn.relu),
    tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(units=120, activation=tf.nn.relu),

    tf.keras.layers.Dense(units=84, activation=tf.nn.relu),
    tf.keras.layers.Dense(units=10, activation=tf.nn.softmax)
])

# 模型展示
model.summary()

输出结果:

在这里插入图片描述

训练模型


# ------------------4. 训练模型------------------

# 设置超参数
num_epochs = 10  # 训练轮数
batch_size = 1000  # 批次大小
learning_rate = 0.001  # 学习率

# 定义优化器
adam_optimizer = tf.keras.optimizers.Adam(learning_rate)
model.compile(optimizer=adam_optimizer,loss=tf.keras.losses.sparse_categorical_crossentropy,metrics=['accuracy'])

complie 的用法:

  • optimizer: 优化器
  • loss: 损失函数
  • metrics: 评价

with tf.Session() as sess:
    # 初始化所有变量
    init = tf.global_variables_initializer()
    sess.run(init)

    model.fit(x=X_train,y=y_train,batch_size=batch_size,epochs=num_epochs)

    # 评估指标
    print(model.evaluate(X_test, y_test))  # loss value & metrics values

输出结果:

在这里插入图片描述

fit 的用法:

  • x: 训练集
  • y: 测试集
  • batch_size: 批次大小
  • enpochs: 训练遍数

保存模型


# ------------------5. 保存模型------------------
model.save('lenet_model.h5')

流程总结

在这里插入图片描述

完整代码


from tensorflow.keras.datasets import mnist
from matplotlib import pyplot as plt
import numpy as np
import tensorflow as tf

# ------------------1. 读取 & 查看数据------------------

# 读取数据
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# 数据集查看
print(X_train.shape)  # (60000, 28, 28)
print(y_train.shape)  # (60000,)
print(X_test.shape)  # (10000, 28, 28)
print(y_test.shape)  # (10000,)
print(type(X_train))  # <class 'numpy.ndarray'>

# 图片显示
plt.imshow(X_train[0], cmap="Greys")  # 查看第一张图片
plt.show()

# ------------------2. 数据预处理------------------

# 格式转换 (将图片从28*28扩充为32*32)
X_train = np.pad(X_train, ((0, 0), (2, 2), (2, 2)), "constant", constant_values=0)
X_test = np.pad(X_test, ((0, 0), (2, 2), (2, 2)), "constant", constant_values=0)
print(X_train.shape)  # (60000, 32, 32)
print(X_test.shape)  # (10000, 32, 32)

# 数据集格式变换
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)

# 数据正则化
X_train /= 255
X_test /= 255

# 数据维度转换
X_train = np.expand_dims(X_train, axis=-1)
X_test = np.expand_dims(X_test, axis=-1)
print(X_train.shape)  # (60000, 32, 32, 1)
print(X_test.shape)  # (10000, 32, 32, 1)

# ------------------3. 模型建立------------------

# 第一个卷积层
conv_layer_1 = tf.keras.layers.Conv2D(filters=6, kernel_size=(5, 5), padding="valid", activation=tf.nn.relu)
# 第一个池化层
pool_layer_1 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), padding="same")
# 第二个卷积层
conv_layer_2 = tf.keras.layers.Conv2D(filters=16, kernel_size=(5, 5), padding="valid", activation=tf.nn.relu)
# 第二个池化层
pool_layer_2 = tf.keras.layers.MaxPool2D(padding="same")
# 扁平化
flatten = tf.keras.layers.Flatten()
# 第一个全连接层
fc_layer_1 = tf.keras.layers.Dense(units=120, activation=tf.nn.relu)
# 第二个全连接层
fc_layer_2 = tf.keras.layers.Dense(units=84, activation=tf.nn.softmax)
# 输出层
output_layer = tf.keras.layers.Dense(units=10, activation=tf.nn.softmax)


# 模型实例化
model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(filters=6, kernel_size=(5, 5), padding='valid', activation=tf.nn.relu,
                           input_shape=(32, 32, 1)),
    # relu
    tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
    tf.keras.layers.Conv2D(filters=16, kernel_size=(5, 5), padding='valid', activation=tf.nn.relu),
    tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(units=120, activation=tf.nn.relu),

    tf.keras.layers.Dense(units=84, activation=tf.nn.relu),
    tf.keras.layers.Dense(units=10, activation=tf.nn.softmax)
])

# 模型展示
model.summary()

# ------------------4. 训练模型------------------

# 设置超参数
num_epochs = 10  # 训练轮数
batch_size = 1000  # 批次大小
learning_rate = 0.001  # 学习率

# 定义优化器
adam_optimizer = tf.keras.optimizers.Adam(learning_rate)
model.compile(optimizer=adam_optimizer,loss=tf.keras.losses.sparse_categorical_crossentropy,metrics=['accuracy'])


with tf.Session() as sess:
    # 初始化所有变量
    init = tf.global_variables_initializer()
    sess.run(init)

    model.fit(x=X_train,y=y_train,batch_size=batch_size,epochs=num_epochs)

    # 评估指标
    print(model.evaluate(X_test, y_test))  # loss value & metrics values

# ------------------5. 保存模型------------------
model.save('lenet_model.h5')

到此这篇关于由浅入深学习TensorFlow MNIST 数据集的文章就介绍到这了,更多相关TensorFlow MNIST 数据集内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

由浅入深学习TensorFlow MNIST 数据集

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

SQL注入宽字节注入由浅到深学习

这篇文章主要为大家介绍了SQL注入宽字节注入由浅到深学习,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-02-24

深入学习MySQL表数据操作

这篇文章主要介绍了深入学习MySQL表数据操作,基于表操作内容围绕主题展开详细介绍,具有一定的参考价值,需要的小伙伴可以参考一下
2022-11-13

【MySQL系列】深入学习数据类型

「前言」文章内容大致是数据库的数据类型。 「归属专栏」MySQL 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 一、数据类型分类二、数值类型2.1 tinyint类型2.2 bit类型2.3 小数类型2.3.1
2023-08-16

深入学习Matplotlib:提升数据可视化能力

提升数据可视化能力:深入解析Matplotlib绘图方法引言:在数据分析和数据科学领域,数据可视化是一个关键的工具。它通过直观的图表和图像来展示数据,帮助我们更好地理解数据的特征和趋势。在Python中,Matplotlib是一个广泛使用
深入学习Matplotlib:提升数据可视化能力
2024-01-13

轻松玩转Python集合:深入浅出,让数据结构不再难懂

Python集合是用于存储和组织数据的强大工具。通过理解集合的类型和特点,掌握集合的操作方法,可以轻松处理数据,提高编程效率。
轻松玩转Python集合:深入浅出,让数据结构不再难懂
2024-02-02

Spring Boot深入学习数据访问之Spring Data JPA与Hibernate的应用

Spring Data JPA是Spring Data的子项目,在使用Spring Data JPA之前,先了解一下Hibernate,因为Spring Data JPA是由Hibernate默认实现的
2022-11-13

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录