我的编程空间,编程开发者的网络收藏夹
学习永远不晚

可视化工具PyVista多线程显示多窗口的实例代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

可视化工具PyVista多线程显示多窗口的实例代码

在使用PyVista进行多线程同时显示多个窗口的时候,发现开启多个线程显示窗口,窗口会卡死,于是便有了这篇文章。

发现问题

在可视化工具——利用PyVista进行mesh的色彩映射这篇博客中,我们实现了使用四种方法对mesh进行色彩映射,为了对这四种方法映射结果有一个直观的认识,我第一个想法就是开启四个线程,分别调用这四个函数。
代码如下:
定义四个色彩映射函数:


import pyvista as pv
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import numpy as np
import colorcet
import threading
from pyvista.demos import demos
from pyvista import examples
import multiprocessing

def mesh_cmp_custom(mesh, name):
 """
 自定义色彩映射
 :param mesh: 输入mesh
 :param name: 比较数据的名字
 :return:
 """
 pts = mesh.points
 mesh[name] = pts[:, 1]
 # Define the colors we want to use
 blue = np.array([12 / 256, 238 / 256, 246 / 256, 1])
 black = np.array([11 / 256, 11 / 256, 11 / 256, 1])
 grey = np.array([189 / 256, 189 / 256, 189 / 256, 1])
 yellow = np.array([255 / 256, 247 / 256, 0 / 256, 1])
 red = np.array([1, 0, 0, 1])

 c_min = mesh[name].min()
 c_max = mesh[name].max()
 c_scale = c_max - c_min

 mapping = np.linspace(c_min, c_max, 256)
 newcolors = np.empty((256, 4))
 newcolors[mapping >= (c_scale * 0.8 + c_min)] = red
 newcolors[mapping < (c_scale * 0.8 + c_min)] = grey
 newcolors[mapping < (c_scale * 0.55 + c_min)] = yellow
 newcolors[mapping < (c_scale * 0.3 + c_min)] = blue
 newcolors[mapping < (c_scale * 0.1 + c_min)] = black

 # Make the colormap from the listed colors
 my_colormap = ListedColormap(newcolors)
 mesh.plot(scalars=name, cmap=my_colormap)


def mesh_cmp_mpl(mesh, name):
 """
  使用Matplotlib进行色彩映射
  :param mesh: 输入mesh
  :param name: 比较数据的名字
  :return:
  """
 pts = mesh.points
 mesh[name] = pts[:, 1]
 mlp_cmap = plt.cm.get_cmap("viridis", 25)
 mesh.plot(scalars=name, cmap=mlp_cmap)


def mesh_cmp(mesh, name):
 """
  使用进行plot自带的色彩映射
  :param mesh: 输入mesh
  :param name: 比较数据的名字
  :return:
 """
 pts = mesh.points
 mesh[name] = pts[:, 1]
 mesh.plot(scalars=name, cmap='viridis_r')


def mesh_cmp_colorcet(mesh, name):
 """
  使用进行colorcet进行色彩映射
  :param mesh: 输入mesh
  :param name: 比较数据的名字
  :return:
 """
 pts = mesh.points
 mesh[name] = pts[:, 1]
 mesh.plot(scalars=name, cmap=colorcet.fire)

开启四个线程调用:


if __name__ == '__main__':
 #mesh = pv.read('vtkData/airplane.ply')
 mesh = examples.download_embryo()
 # 开启多线程用于可视化曲面
 t1 = threading.Thread(target=mesh_cmp, args=(mesh, 'y_height',))
 t1.start()
 t2 = threading.Thread(target=mesh_cmp_mpl, args=(mesh, 'y_height',))
 t2.start()
 t3 = threading.Thread(target=mesh_cmp_custom, args=(mesh, 'y_height',))
 t3.start()

 t1.join()
 t2.join()
 t3.join()

结果,卡顿了

在这里插入图片描述

问题分析

首先说一下python的多线程问题

python多线程

线程(Thread)也叫轻量级进程,是操作系统能够进行运算调度的最小单位,它被包涵在进程之中,是进程中的实际运作单位。线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其它线程共享进程所拥有的全部资源。一个线程可以创建和撤消另一个线程,同一进程中的多个线程之间可以并发执行。

举个简单的例子来理解下:
假定有一 7 * 24 小时不停工的工厂,由于其电力有限,一次仅供一个车间使用,当一个车间在生产时,其他车间停工。在这里我们可以理解这个工厂相当于操作系统,供电设备相当于 CPU,一个车间相当于一个进程。

一个车间里,可以有很多工人。他们协同完成一个任务。车间的空间是工人们共享的,这里一个工人就相当于一个线程,一个进程可以包括多个线程。比如许多房间是每个工人都可以进出的。这象征一个进程的内存空间是共享的,每个线程都可以使用这些共享内存。

Python 多线程适合用在 I/O 密集型任务中。I/O 密集型任务较少时间用在 CPU 计算上,较多时间用在 I/O 上,如文件读写,web 请求,数据库请求 等;而对于计算密集型任务,应该使用多进程。

参考: https://blog.csdn.net/somezz/article/details/80963760

问题解决

很明显,应该使用多进程来显示四个窗口。
代码:


if __name__ == '__main__':
 #mesh = pv.read('vtkData/airplane.ply')
 mesh = examples.download_embryo()
 # 开启多进程用于可视化曲面
 p1 = multiprocessing.Process(target=mesh_cmp_custom, args=(mesh, 'y_height',))
 p2 = multiprocessing.Process(target=mesh_cmp_mpl, args=(mesh, 'y_height',))
 p3 = multiprocessing.Process(target=mesh_cmp, args=(mesh, 'y_height',))
 p1.start()
 p2.start()
 p3.start()

 p1.join()
 p2.join()
 p3.join()

结果:

在这里插入图片描述

到此这篇关于可视化工具PyVista多线程显示多窗口的实例代码的文章就介绍到这了,更多相关PyVista可视化工具内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

可视化工具PyVista多线程显示多窗口的实例代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

怎样用一个开源工具实现多线程 Python 程序的可视化

今天就跟大家聊聊有关怎样用一个开源工具实现多线程 Python 程序的可视化,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。VizTracer 可以跟踪并发的 Python 程序,以帮
2023-06-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录