我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Numpy初步

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Numpy初步

1,获取矩阵行列数

Import numpyasnp

#创建二维的naaray对象

a=np.array([[1,2,3,4,5],[6,7,8,9,10]])

print(a.shape)   #返回一个形状,是一个tuple

print(a.shape[0])#获得行数,试想如果是多维的呢,所以你就会明白为什么是[0]

print(a.shape[1])   #获得列数

2,矩阵的截取

importnumpyasnp

#创建二维的naaray对象

a=np.array([[1,2,3,4,5],[6,7,8,9,10]])

print(a[0:1])#这里不是很懂,看下面

print(a[1,2:4])#返回[89],返回第二行2-3个数

print(a[1,2:5])#返回[8910]证明了取第二行的2-4个数

3,按条件截取

importnumpyasnp

#创建二维的naaray对象

a=np.array([[1,2,3,4,5],[6,7,8,9,10]])

b=a[a>6]#截取矩阵a中大于6的元素,范围的是一维数组

print(b)

print(a>6)#其实布尔语句首先生成一个布尔矩阵,将布尔矩阵传入[](方括号)实现截取

4,满足一定条件的元素变成特定的值

importnumpyasnp

#创建二维的naaray对象

a=np.array([[1,2,3,4,5],[6,7,8,9,10]])

print(a)

#大于6清零后矩阵为

a[a>6]=0

print(a)

结果分别为:

[[12345]

[678910]]

[[12345]

[60000]]

5,矩阵合并

importnumpyasnp

 

a1=np.array([[1,2],[3,4]])

a2=np.array([[5,6],[7,8]])

 

print(np.hstack([a1,a2]))#Horizontal

print(a1)#所以知道为什么是1256,2478了

print(np.vstack((a1,a2)))#vertical

np.concatenate((a1,a2),axis=0)#等价于np.vstack((a1,a2))

np.conca

6,通过函数创建矩阵

numpy自带创建narray对象的函数,可以方便的创建常用的有规律的矩阵

importnumpyasnp

a=np.arange(10)#默认从0开始到10(不包括10),步长为1

print(a)#返回[0123456789]

a1=np.arange(5,10)#从5开始到10(不包括10),步长为1

print(a1)#返回[56789]

a2=np.arange(5,20,2)#从5开始到20(不包括20),步长为2

print(a2)#返回[5791113151719]

 

7,linspace

创建指定数量等间隔的序列,实际生成一个等差数列

importnumpyasnp

 

a=np.linspace(0,10,7)#生成首位是0,末位是10,含7个数的等差数列

print(a)

8,logspace

logspace用于生成等比数列。 

importnumpyasnp

 

a=np.logspace(0,10,7)#生成首位是10**0,末位是10**4,含5个数的等比数列

print(a)

9,ones,zeros,eye,empty

ones创建全1矩阵 

zeros创建全0矩阵 

eye创建单位矩阵 

empty创建空矩阵(实际有值)

importnumpyasnp

 

one=np.ones((3,4))#创建3*4的全1矩阵

print(one)

 

zero=np.zeros((3,4))#创建3*4的全0矩阵

print(zero)

 

eye=np.eye(5)#创建5阶单位矩阵

print(eye)

 

empty=np.empty((3,4))#创建3*4的空矩阵(实际有值)

print(empty)

10,fromstring ——获得字符ASCII码

fromstring()方法可以将字符串转化成ndarray对象,需要将字符串数字化时这个方法比较有用,可以获得字符串的ascii码序列,转成相应字符的阿斯卡码。

importnumpyasnp

 

a="abcdef"

b=np.fromstring(a,dtype=np.int8)#因为一个字符为8位,所以指定dtype为np.int8

print(b)#返回[979899100101102]

11,fromfunction

fromfunction()方法可以根据矩阵的行号列号生成矩阵的元素。 

例如创建一个矩阵,矩阵中的每个元素都为行号和列号的和。

importnumpyasnp

 

deffunc(i,j):

returni+j     #这里也可以是别的,比如再加一个9

 

a=np.fromfunction(func,(5,6))

#函数定义就是如此,第一个参数为指定函数,第二个参数为列表list或元组tuple,说明矩阵的大小

print(a)

12,常用矩阵函数

同样地,numpy中也定义了许多函数,使用这些函数可以将函数作用于矩阵中的每个元素。 

表格中默认导入了numpy模块,即 import numpy asnp

a为ndarray对象。

np.sin(a) 对矩阵a中每个元素取正弦,sin(x)

np.cos(a) 对矩阵a中每个元素取余弦,cos(x)

np.tan(a) 对矩阵a中每个元素取正切,tan(x)

np.arcsin(a)对矩阵a中每个元素取反正弦,arcsin(x)

np.arccos(a)对矩阵a中每个元素取反余弦,arccos(x)

np.arctan(a)对矩阵a中每个元素取反正切,arctan(x)

np.exp(a) 对矩阵a中每个元素取指数函数,ex

np.sqrt(a) 对矩阵a中每个元素开根号√x

importnumpyasnp

 

a=np.array([[1,2,3],[4,5,6]])

print(np.sin(a))

 

#结果

[[0.841470980.909297430.14112001]

[-0.7568025-0.95892427-0.2794155]]

 

print(np.arcsin(a))

 

#结果

#RuntimeWarning:invalidvalueencounteredinarcsin

print(np.arcsin(a))

[[1.57079633nannan]   #nan是not a number 的意思

[nannannan]]

13,矩阵乘法(点乘)

条件:第一个矩阵的列数等于第二个矩阵的行数,函数为dot

importnumpyasnp

 

a1=np.array([[1,2,3],[4,5,6]])

a2=np.array([[1,2],[3,4],[5,6]])

ifa1.shape[1]==a2.shape[0]:#列数等于行数的话

print(a1.dot(a2))

 

14,矩阵的转置

transpose函数

importnumpyasnp

 

a=np.array([[1,2,3],[4,5,6]])

print(a.transpose())

15,矩阵的逆

求矩阵的逆需要先导入numpy.linalg,用linalg的inv函数来求逆。 

矩阵求逆的条件是矩阵的行数和列数相同。

importnumpyasnp

importnumpy.linalgaslg

 

a=np.array([[1,2,3],[4,5,6],[7,8,9]])

print(lg.inv(a))

 

#结果

[[-4.50359963e+159.00719925e+15-4.50359963e+15]

[9.00719925e+15-1.80143985e+169.00719925e+15]

[-4.50359963e+159.00719925e+15-4.50359963e+15]]

 

a=np.eye(3)#3阶单位矩阵

print(lg.inv(a))#单位矩阵的逆为他本身

 

#结果

[[1.0.0.]

[0.1.0.]

[0.0.1.]]

16,矩阵信息获取(如平均值)

获得矩阵中元素最大最小值的函数分别是max和min,可以获得整个矩阵、行或列的最大最小值。

importnumpyasnp

a=np.array([[1,3,9],[1,5,6]])

print(a.max())

print(a.min())

print(a.max(axis=0))#[456]axis=0行方向最大(小)值,即获得每列的最大(小)值

print(a.min(axis=1))#[14]axis=1列方向最大(小)值

#要想获得最大最小值元素所在的位置,可以通过argmax函数来获得

print(a.argmax(axis=1))

17,平均值mean()

获得矩阵中元素的平均值可以通过函数mean()。同样地,可以获得整个矩阵、行或列的平均值

importnumpyasnp

 

a=np.array([[1,2,3],[4,5,6]])

print(a.mean())#结果为:3.5

 

#同样地,可以通过关键字axis参数指定沿哪个方向获取平均值

print(a.mean(axis=0))#结果[2.53.54.5]

print(a.mean(axis=1))#结果[2.5.]

18,方差var()

importnumpyasnp

a=np.array([[1,2,3],[4,5,6]])

print(a.var())

print(a.var(axis=0))

print(a.var(axis=1))

19,标准差std()

importnumpyasnp

a=np.array([[1,2,3],[4,5,6]])

print(a.std())

print(a.std(axis=0))

print(a.std(axis=1))

20,中值median()

调用方法是numpy.median(x,[axis]),axis可指定轴方向,默认为axis=none,对所有数取中值

importnumpyasnp

x=np.array([[1,2,3],[4,5,6]])

print(np.median(x))#对所有数取中值

print(np.median(x,axis=0))#沿第一维方向取中值

print(np.median(x,axis=1))#沿第二维方向取中值

21,求和sum()

importnumpyasnp

a=np.array([[1,2,3],[4,5,6]])

print(a.sum())#对整个矩阵求和

print(a.sum(axis=0))#对行方向求和

print(a.sum(axis=1))#对列方向求和

22,累积和cussum()

某位置累积和指的是该位置之前(包括该位置)所有元素的和。

例如序列[1,2,3,4,5],其累计和为[1,3,6,10,15],即第一个元素为1,第二个元素为1+2=3,……,第五个元素为1+2+3+4+5=15。

矩阵求累积和的函数是cumsum(),可以对行,列,或整个矩阵求累积和。

importnumpyasnp

a=np.array([[1,2,3],[4,5,6]])

print(a.cumsum())#对整个矩阵求累积和

print(a.cumsum(axis=0))#对行方向求累积和

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Numpy初步

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Numpy初步

1,获取矩阵行列数Import numpyasnp#创建二维的naaray对象a=np.array([[1,2,3,4,5],[6,7,8,9,10]])print(a.shape) #返回一个形状,是一个tupleprint(a.sh
2023-06-05

初步体验Oracle

Oracle 与Mysql 对比:MySQL: 免费;小型企业;仅是数据库;轻Oracle:收费, 中大型企业;数据库服务(权限,并发,事务,一致性);更适合集群;重共同点:都属于关系型数据库 RDBMS 非关系型数据库NoSQL(Not Only SQL )
初步体验Oracle
2014-05-25

nodejs初步体验篇

前言:写这篇文章的由来:1.前段时间单位有新项目启动,服务端要做的工作不多也不算麻烦,就是处理一些中间层的服务,而且我们团队里面个个都会JavaScript,领导就决定试试服务器端的JavaScript,结果本人有幸被派去研究了几天Node
2022-06-04

初步认识防火墙

编程学习网:防火墙指的就是一个由软件和硬件设备组合而成、在内部网和外部网之间、专用网与公共网之间的界面上的保护屏障。
初步认识防火墙
2024-04-23

Python dis 模块初步使用

Python 代码先被编译为字节码后,再由Python虚拟机来执行字节码, Python的字节码是一种类似汇编指令的中间语言, 一个Python语句会对应若干字节码指令,虚拟机一条一条执行字节码指令, 从而完成程序执行。Python dis
2023-01-31

多线程学习初步(转)

import java.io.*;//多线程编程public class MultiThread {public static void main(String args[]){System.out.println("我是主线程!");//
2023-06-03

python小白的初步爬虫

前序: 最近工作不是很忙,领导突然找我谈话,说是谈话,其实就是分配活呗。果不其然,很快进入正题, 给了我一个网址链接,然后说需要商品的信息。。。巴拉巴拉。好吧,去做吧。我当时的内心是崩溃的,python爬虫压根没碰过,这下完蛋了,理了理思绪
2023-01-30

《初步了解JVM》第1章

大家都知道,Java中JVM的重要性,学习了JVM你对Java的运行机制、编译过程和如何对Java程序进行调优相信都会有一个很好的认知。废话不多说,直接带大家来初步认识一下JVM。什么是JVM?JVM(Java Virtual Machin
2023-06-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录