我的编程空间,编程开发者的网络收藏夹
学习永远不晚

使用python求解迷宫问题的三种实现方法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

使用python求解迷宫问题的三种实现方法

前言

在迷宫问题中,给定入口和出口,要求找到路径。本文将讨论三种求解方法,递归求解、回溯求解和队列求解。

在介绍具体算法之前,先考虑将迷宫数字化。这里将迷宫用一个二维的list存储(即list嵌套在list里),将不可到达的位置用1表示,可到达的位置用0表示,并将已经到过的位置用2表示。

递归求解

递归求解的基本思路是:

  • 每个时刻总有一个当前位置,开始时这个位置是迷宫人口。
  • 如果当前位置就是出口,问题已解决。
  • 否则,如果从当前位置己无路可走,当前的探查失败,回退一步。
  • 取一个可行相邻位置用同样方式探查,如果从那里可以找到通往出口的路径,那么从当前位置到出口的路径也就找到了。

在整个计算开始时,把迷宫的人口(序对)作为检查的当前位置,算法过程就是:

  • mark当前位置。
  • 检查当前位置是否为出口,如果是则成功结束。
  • 逐个检查当前位置的四邻是否可以通达出口(递归调用自身)。
  • 如果对四邻的探索都失败,报告失败。
dirs=[(0,1),(1,0),(0,-1),(-1,0)] #当前位置四个方向的偏移量
path=[]              #存找到的路径
 
def mark(maze,pos):  #给迷宫maze的位置pos标"2"表示“倒过了”
    maze[pos[0]][pos[1]]=2
 
def passable(maze,pos): #检查迷宫maze的位置pos是否可通行
    return maze[pos[0]][pos[1]]==0
 
def find_path(maze,pos,end):
    mark(maze,pos)
    if pos==end:
        print(pos,end=" ")  #已到达出口,输出这个位置。成功结束
        path.append(pos)
        return True
    for i in range(4):      #否则按四个方向顺序检查
        nextp=pos[0]+dirs[i][0],pos[1]+dirs[i][1]
        #考虑下一个可能方向
        if passable(maze,nextp):        #不可行的相邻位置不管
            if find_path(maze,nextp,end):#如果从nextp可达出口,输出这个位置,成功结束
                print(pos,end=" ")
                path.append(pos)
                return True
    return False
 
def see_path(maze,path):     #使寻找到的路径可视化
    for i,p in enumerate(path):
        if i==0:
            maze[p[0]][p[1]] ="E"
        elif i==len(path)-1:
            maze[p[0]][p[1]]="S"
        else:
            maze[p[0]][p[1]] =3
    print("\n")
    for r in maze:
        for c in r:
            if c==3:
                print('\033[0;31m'+"*"+" "+'\033[0m',end="")
            elif c=="S" or c=="E":
                print('\033[0;34m'+c+" " + '\033[0m', end="")
            elif c==2:
                print('\033[0;32m'+"#"+" "+'\033[0m',end="")
            elif c==1:
                print('\033[0;;40m'+" "*2+'\033[0m',end="")
            else:
                print(" "*2,end="")
        print()
 
if __name__ == '__main__':
    maze=[[1,1,1,1,1,1,1,1,1,1,1,1,1,1],\
          [1,0,0,0,1,1,0,0,0,1,0,0,0,1],\
          [1,0,1,0,0,0,0,1,0,1,0,1,0,1],\
          [1,0,1,0,1,1,1,1,0,1,0,1,0,1],\
          [1,0,1,0,0,0,0,0,0,1,1,1,0,1],\
          [1,0,1,1,1,1,1,1,1,1,0,0,0,1],\
          [1,0,1,0,0,0,0,0,0,0,0,1,0,1],\
          [1,0,0,0,1,1,1,0,1,0,1,1,0,1],\
          [1,0,1,0,1,0,1,0,1,0,1,0,0,1],\
          [1,0,1,0,1,0,1,0,1,1,1,1,0,1],\
          [1,0,1,0,0,0,1,0,0,1,0,0,0,1],\
          [1,1,1,1,1,1,1,1,1,1,1,1,1,1]]
    start=(1,1)
    end=(10,12)
    find_path(maze,start,end)
    see_path(maze,path)

代码中see_path函数可以在控制台直观打印出找到的路径,打印结果如下:

S是入口位置 ,E是出口位置,*代表找到的路径,#代表探索过的路径。

回溯求解

在回溯解法中,主要是用栈来存储可以探索的位置。利用栈后进先出的特点,在一条分路上探索失败时,回到最近一次存储的可探索位置。这是一种深度优先搜索的方法。

def maze_solver(maze,start,end):
    if start==end:
        print(start)
        return
    st=SStack()
    mark(maze,start)
    st.push((start,0))             #入口和方向0的序对入栈
    while not st.is_empty():      #走不通时回退
        pos,nxt=st.pop()           #取栈顶及其检查方向
        for i in range(nxt,4):     #依次检查未检查方向,算出下一位置
            nextp = pos[0] + dirs[i][0], pos[1] + dirs[i][1]
            if nextp==end:
                print_path(end,pos,st)  #到达出口,打印位置
                return
            if passable(maze,nextp):    #遇到未探索的新位置
                st.push((pos,i+1))      #原位置和下一方向入栈
                mark(maze,nextp)
                st.push((nextp,0))      #新位置入栈
                break                   #退出内层循环,下次迭代将以新栈顶作为当前位置继续
    print("找不到路径")

队列求解

队列求解算法中,以队列存储可以探索的位置。利用队列先进先出的特点,实现在每个分支上同时进行搜索路径,直到找到出口。这是一种广度优先搜索的方法。

def maze_solver_queue(maze,start,end):
   path.append(start)
   if start==end:
       print("找到路径")
       return
   qu=SQueue()
   mark(maze,start)
   qu.enqueue(start)                #start位置入队
   while not qu.is_empty():        #还有候选位置
       pos=qu.dequeue()             #取出下一位置
       for i in range(4):           #检查每个方向
           nextp = pos[0] + dirs[i][0], pos[1] + dirs[i][1]
           if passable(maze,nextp): #找到新的探索方向
               if nextp==end:       #是出口,成功
                   print("找到路径")
                   path.append(end)
                   return
               mark(maze,nextp)
               qu.enqueue(nextp)    #新位置入队
               path.append(nextp)
 
   print("未找到路径")

但队列求解方法,不能直接得出找到的具体路径,要得到找到的路径还需要其他存储结构(如链表)。

总结

到此这篇关于使用python求解迷宫问题的三种实现方法的文章就介绍到这了,更多相关python求解迷宫问题内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

使用python求解迷宫问题的三种实现方法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何使用python求解迷宫问题

这篇文章主要介绍“如何使用python求解迷宫问题”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“如何使用python求解迷宫问题”文章能帮助大家解决问题。前言在迷宫问题中,给定入口和出口,要求找到路
2023-06-29

用python实现零钱找零的三种方法

1.递归(recursion)def coins_changeREC(coin_values, change): """ 递归实现零钱找零 """ min_count = change # base case
2023-01-31

使用Redis实现记录访问次数的三种方案

目录0. 前言1. 使用Filter实现2. 使用AOP实现1. 导入依赖2. 写一个切面类,实现统计访问次数。3. 开启AOP5. plus版本3. 使用springMVC拦截器实现1. 配置拦截器2. 定义拦截器3. 控制器类4. 测试
使用Redis实现记录访问次数的三种方案
2024-09-06

解决Linux动态库依赖问题的三种实用方法分别是什么

解决Linux动态库依赖问题的三种实用方法分别是什么,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。 概述平时在编译安装某个软件时,如果自定义了一些安装目录,安装后有可能会提
2023-06-16

使用sublime Text3过程中各种问题的解决方法

这篇文章给大家介绍使用sublime Text3过程中各种问题的解决方法,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。一、package control无法安装有梯子的可以用ctrl+shift+p呼出命令行,输入pa
2023-06-26

python实现字符串连接的三种方法及其效率、适用场景详解

python字符串连接的方法,一般有以下三种: 方法1:直接通过加号(+)操作符连接website = 'python' + 'tab' + '.com' 方法2:join方法 listStr = ['python', 'tab', '.c
2022-06-04

Python实现列表删除重复元素的三种常用方法分析

本文实例讲述了Python实现列表删除重复元素的三种常用方法。分享给大家供大家参考,具体如下: 给定一个列表,要求删除列表中重复元素。listA = ['python','语','言','是','一','门','动','态','语','言'
2022-06-04

使用python-slim镜像遇到无法使用PostgreSQL的问题及解决方法

目录前言报错排错解决使用 psycopg2-binary手动安装 libpq 库不同的python基础镜像小结前言之前不是把 DjangoStarter 的 docker 方案重新搞好了吗一开始demo部署是使用 SQLite 数据库的
使用python-slim镜像遇到无法使用PostgreSQL的问题及解决方法
2024-08-21

JavaScript RegExp 方法的实战应用:解决现实世界中的问题

JavaScript RegExp 方法提供了强大的模式匹配能力,以下是一系列实际应用示例,展示如何使用 RegExp 解决现实世界中的问题。
JavaScript RegExp 方法的实战应用:解决现实世界中的问题
2024-03-09

windows8 RP版使用中出现死机问题的解决方法

具体步骤:   1.打开控制面板   2.选择程序与功能   3.点击左侧开启关闭windows功能   4.将名为Hyper-V的功能打上勾   5.按照提示重启即可   原理:   规定windows以基本虚拟化形式运行,但是和虚拟机又
2022-06-04

JSP数据和JavaScirpt数据交互使用问题的一种解决方法 (转)

JSP数据和JavaScirpt数据交互使用问题的一种解决方法 (转)[@more@]JSP数据和JavaScirpt数据交互使用问题的一种解决方法 对于web程序来说,前端(Javascript)和后端(JSP/servlet)是没法共
2023-06-03

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录